Citation: | MA Qiaoyu, ZHANG Xin, ZHANG Chunlei, et al., “Hyperspectral Image Classification Based on Capsule Network,” Chinese Journal of Electronics, vol. 31, no. 1, pp. 146-154, 2022, doi: 10.1049/cje.2021.00.056 |
[1] |
A. F. Goetz, G. Vane, J. E. Solomon, et al., “Imaging spectrometry for earth remote sensing,” Science, vol.228, no.4704, pp.1147–1153, 1985. doi: 10.1126/science.228.4704.1147
|
[2] |
X. Bian, T. Zhang, L. Yan, et al., “Spatial-spectral method for classification of hyperspectral images,” Optics letters, vol.38, no.6, pp.815–817, 2013. doi: 10.1364/OL.38.000815
|
[3] |
Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, “Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques,” IEEE Transactions on Geoscience and Remote Sensing, vol.47, no.8, pp.2973– 2987, 2009. doi: 10.1109/TGRS.2009.2016214
|
[4] |
F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. on Geoscience and Remote Sensing, vol.42, no.8, pp.1778–1790, 2004. doi: 10.1109/TGRS.2004.831865
|
[5] |
Y. Luo, J. Zou, C. Yao, et al., “HSI-CNN: A novel convolution neural network for hyperspectral image,” 2018 International Conference on Audio, Language and Image Processing (ICALIP), IEEE, Shanghai, pp.464–469, 2018.
|
[6] |
H Hong, W. Lihua, and S. Guangyao, “Supervised multi-manifold discriminant embedding method for hyperspectral remote sensing image classification,” Acta Electronica Sinica, vol.48, no.6, pp.1099–1107, 2020. (in Chinese)
|
[7] |
Y Honggeng, T. Shengwei, Y. Long, et al., “Remote sensing image detection and segmentation based on word embedding,” Acta Electronica Sinica, vol.48, no.1, pp.75–83, 2020. (in Chinese)
|
[8] |
L Yanshan, F. Leidong, and X. Weixin, “TGSIFT: Robust SIFT descriptor based on tensor gradient for hyperspectral images,” Chinese Journal of Electronics, vol.29, no.5, pp.916–925, 2020. doi: 10.1049/cje.2020.08.007
|
[9] |
L Qichao, X. Liang, L. Fang, et al., “SSCDenseNet: A spectral-spatial convolutional dense network for hyperspectral image classification,” Acta Electronica Sinica, vol.48, no.4, pp.751–762, 2020. (in Chinese)
|
[10] |
K. He, X. Zhang, S. Ren, et al, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp.770–778, 2016.
|
[11] |
M. Seydgar, A. Alizadeh Naeini, M. Zhang, et al., “3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images,” Remote Sensing, vol.11, no.7, article no.883, 2019. doi: 10.3390/rs11070883
|
[12] |
L. Mou, Y. Hua, and X. X. Zhu, “A relation-augmented fully convolutional network for semantic segmentation in aerial scenes,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, pp.12416–12425, 2019.
|
[13] |
Y. Du, W. Song, Q. He, et al., “Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection,” Information Fusion, vol.49, pp.89–99, 2019. doi: 10.1016/j.inffus.2018.09.006
|
[14] |
W. Sun and R. Wang, “Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM,” IEEE Geoscience and Remote Sensing Letters, vol.15, no.3, pp.474–478, 2018. doi: 10.1109/LGRS.2018.2795531
|
[15] |
N. Wang, F. Chen, B. Yu, et al., “Segmentation of large-scale remotely sensed images on a Spark platform: A strategy for handling massive image tiles with the MapReduce model,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.162, pp.137–147, 2020. doi: 10.1016/j.isprsjprs.2020.02.012
|
[16] |
K. Zhu, W. Chen, P. Ghamisi, et al., “Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification,” Remote Sensing, vol.11, no.3, article no.223, 2019.
|
[17] |
M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, et al., “Capsule networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol.57, no.4, pp.2145–2160, 2018.
|
[18] |
H. Zhang, L. Meng, W. Xian, et al., “1D-convolutional capsule network for hyperspectral image classification,” arXiv preprint, arXiv: 1903.09834, 2019.
|
[19] |
S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” arXiv preprint, arXiv: 1710.09829, 2017.
|
[20] |
G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” International Conference on Artificial Neural Networks, Espoo, pp.44–51, 2011.
|
[21] |
C. Szegedy, L. Wei, Y. Jia, et al., “Going deeper with convolutions,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, pp.1–9, 2015.
|
[22] |
C. Szegedy, V. Vanhoucke, S. Ioffe, et al., “Rethinking the inception architecture for computer vision,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp.2818–2826, 2016.
|
[23] |
K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image recognition,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp.770–778, 2016.
|
[24] |
G. Huang, Z. Liu, L. Van Der Maaten, et al., “Densely connected convolutional networks,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, pp.4700–4708, 2017.
|
[25] |
F. Khajehrayeni and H. Ghassemian, “A linear hyperspectral unmixing method by means of autoencoder networks,” International Journal of Remote Sensing, vol.42, no.7, pp.2517–2531, 2021. doi: 10.1080/01431161.2020.1854893
|
[26] |
L. He, J. Zhu, J. Li, et al., “Spectral-fidelity convolutional neural networks for hyperspectral pansharpening,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.13, pp.5898–5914, 2020. doi: 10.1109/JSTARS.2020.3025040
|
[27] |
T. Alipour-Fard, M. Paoletti, J. M. Haut, et al., “Multibranch selective kernel networks for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol.18, no.6, pp.1089–1093, 2021.
|
[28] |
C. Zhang, G Li, R Lei, et al., “Deep feature aggregation network for hyperspectral remote sensing image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.13, pp.5314–5325, 2020. doi: 10.1109/JSTARS.2020.3020733
|