Citation: | ZHANG Yi, LIU Guoqiang, SHEN Xuan, et al., “Rectangle Attack Against Type-I Generalized Feistel Structures,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 713-720, 2022, doi: 10.1049/cje.2021.00.058 |
[1] |
Y. Zheng, T. Matsumoto, and H. Imai, “On the construction of block ciphers provably secure and not relying on any unproved hypotheses,” Proc. of CRYPTO 1989, Santa Barbara, California, USA, pp.461–480, 1989.
|
[2] |
N. Wang, “Security evaluation against linear cryptanalysis for a class of block cipher transform cluster,” Acta Electronica Sinica, vol.48, no.1, pp.137–142, 2020. (in Chinese) doi: 10.3969/j.issn.0372-2112.2020.01.017
|
[3] |
Y. Zheng and W. Wu, “Security of Khudra against meet-in-the-middle-type cryptanalysis,” Chinese Journal of Electronics, vol.28, no.3, pp.482–488, 2019. doi: 10.1049/cje.2019.03.008
|
[4] |
C. Adams and J. Gilchrist, “The CAST-256 encryption algorithm,” Network Working Group, RFC 2612, available at: https://www.ipa.go.jp/security/rfc/RFC2612EN.html, 1999.
|
[5] |
S. Hirose, H. Kuwakado, and H. Yoshida, “SHA-3 proposal: Lesamnta,” available at: http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/LESAMNTA_Comments.pdf, 2008.
|
[6] |
E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Journal of Cryptology, vol.4, no.1, pp.3–72, 1991. doi: 10.1007/BF00630563
|
[7] |
C. Blondeau and B. Gérard, “Multiple differential cryptanalysis: Theory and practice,” Proc. of FSE 2011, Lyngby, Denmark, pp.35–54, 2011.
|
[8] |
T. Cui, C. Jin, and J. Ma, “A new method for finding impossible differentials of generalized Feistel structures,” Chinese Journal of Electronics, vol.27, no.4, pp.728–733, 2018. doi: 10.1049/cje.2018.04.002
|
[9] |
D. A. Wagner, “The boomerang attack,” Proc. of FSE 1999, Rome, Italy, pp.156–170, 1999.
|
[10] |
E. Biham, O. Dunkelman, and N. Keller, “The rectangle attack – Rectangling the serpent,” Proc. of EUROCRYPT 2001, Innsbruck, Austria, pp.340–357, 2001.
|
[11] |
B. Sun, Z. Liu, V. Rijmen, et al., “Links among impossible differential, integral and zero correlation linear cryptanalysis,” Proc. of CRYPTO 2015, Santa Barbara, CA, USA, pp.95–115, 2015.
|
[12] |
T. Shirai and K. Araki, “On generalized Feistel structures using the diffusion switching mechanism,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.E91-A, no.8, pp.2120–2029, 2008. doi: 10.1093/ietfec/e91-a.8.2120
|
[13] |
L. Cheng, “Cryptanalysis on block ciphers structures,” Ph.D.Thesis, National University of Defense Technology, China, 2017. (in Chinese)
|
[14] |
Y. Deng, C. Jin, and R. Li, “Meet in the middle attack on Type-1 Feistel construction,” Proc. of Inscrypt 2017, Xi’an, China, pp.427–444, 2017.
|
[15] |
T. Cui, S. Chen, and H. Zheng, “A structural attack on Type-I generalized Feistel networks,” IEEE Access, vol.7, pp.69304–69310, 2019. doi: 10.1109/ACCESS.2019.2918350
|
[16] |
B. Ni and X. Dong, “Improved quantum attack on Type-1 generalized Feistel schemes and its application to CAST-256,” Journal of Electronics & Information Technology, vol.42, no.2, pp.295–306, 2020. (in Chinese) doi: 10.11999/JEIT190633
|
[17] |
E. Biham, O. Dunkelman, and N. Keller, “A related-key rectangle attack on the full KASUMI,” Proc. of ASIACRYPT 2005, Chennai, India, pp.443–461, 2005.
|
[18] |
H. Hadipour, N. Bagheri, and L. Song, “Improved rectangle attacks on SKINNY and CRAFT,” IACR Transactions on Symmetric Cryptology, vol.2021, no.2, pp.140–198, 2021.
|
[19] |
S. Murphy, “The return of the cryptographic boomerang,” IEEE Transactions on Information Theory, vol.57, no.4, pp.2517–2521, 2011. doi: 10.1109/TIT.2011.2111091
|
[20] |
A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the full AES-192 and AES-256,” Proc. of ASIACRYPT 2009, Tokyo, Japan, pp.1–18, 2009.
|
[21] |
C. Cid, T. Huang, T. Peyrin, et al., “Boomerang connectivity table: A new cryptanalysis tool,” Proc. of EUROCRYPT 2018, Tel Aviv, Israel, pp.683–714, 2018.
|
[22] |
K. Li, L. Qu, B. Sun, et al., “New results about the boomerang uniformity of permutation polynomials,” IEEE Transactions on Information Theory, vol.65, no.11, pp.7542–7553, 2019. doi: 10.1109/TIT.2019.2918531
|
[23] |
H. Wang and T. Peyrin, “Boomerang switch in multiple rounds,” IACR Transactions on Symmetric Cryptology, vol.2019, no.1, pp.142–169, 2019. doi: 10.13154/tosc.v2019.i1.142-169
|
[24] |
L. Song, X. Qin, and L. Hu, “Boomerang connectivity table revisited,” IACR Transactions on Symmetric Cryptology, vol.2019, no.1, pp.118–141, 2019. doi: 10.13154/tosc.v2019.i1.118-141
|
[25] |
H. Boukerrou, P. Huynh, V. Lallemand, et al., “On the Feistel counterpart of the boomerang connectivity table: Introduction and analysis of the FBCT,” IACR Transactions on Symmetric Cryptology, vol.2020, no.1, pp.331–362, 2020. doi: 10.13154/tosc.v2020.i1.331-362
|
[26] |
Z. Niu, “The study of modulo $2^n $,” available at: https://eprint.iacr.org/2021/056, 2021.
|
[27] |
J. Kelsey, T. Kohno, and B. Schneier, “Amplified boomerang attacks against reduced-round MARS and serpent,” Proc. of FSE 2000, New York, NY, USA, pp.75–93, 2000.
|
[28] |
S. Tian, C. Boura, and L. Perrin, “Boomerang uniformity of popular S-box constructions,” Designs, Codes and Cryptography, vol.88, no.9, pp.1959–1989, 2020. doi: 10.1007/s10623-020-00785-0
|