Citation: | PANG Lihua, ZHANG Jin, ZHANG Yang, et al. “Investigation and Comparison of 5G Channel Models: From QuaDRiGa, NYUSIM, and MG5G Perspectives”. Chinese Journal of Electronics, vol. 31 no. 1. doi: 10.1049/cje.2021.00.103 |
[1] |
Y. Liu, C. Wang, C. F. Lopez, et al., “3D non-stationary wideband tunnel channel models for 5G high-speed train wireless communications,” IEEE Trans. Intell. Transp. Syst., vol.21, no.1, pp.259–272, 2020. doi: 10.1109/TITS.2019.2890992
|
[2] |
T. Zhou, H. Li, Y. Wang, et al., “Channel modeling for future high-speed railway communication systems: An survey,” IEEE Access, vol.7, pp.52818–52826, 2019. doi: 10.1109/ACCESS.2019.2912408
|
[3] |
A. Ghosh, A. Maeder, M. Baker, et al., “5G evolution: An view on 5G cellular technology beyond 3GPP release 15,” IEEE Access, vol.7, pp.127639–127651, 2019. doi: 10.1109/ACCESS.2019.2939938
|
[4] |
A. Maltsev, A. Pudeyev, I. Bolotin, et al., “Channel modeling and characterization,” V1.0, Document, FP7-ICT-608637/D5.1, MiWEBA, Breitengussbach, Germany, 2014.
|
[5] |
V. Nurmela, A. Karttunen, A. Roivainen, et al., “METIS channel models,” Document, FP7-ICT-317669-METIS/D1.4, Mobile and Wireless Communications Enablers for the Twenty-twenty Information Society (METIS), available online: https://metis2020.com/documents/deliverables, 2015.
|
[6] |
I. Tan, W. Tang, K. Laberteaux, et al., “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proc. IEEE Int. Conf. Commun., Beijing, pp.4882–4888, 2008.
|
[7] |
O. Renaudin, V. Kolmonen, P. Vainikainen, et al., “Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band,” IEEE Trans. Veh. Technol., vol.62, no.8, pp.3531–3540, 2013. doi: 10.1109/TVT.2013.2257905
|
[8] |
C. Wang, J. Bian, J. Sun, et al., “A survey of 5G channel measurements and models,” IEEE Commun. Surv. Tut., vol.20, no.4, pp.3142–3168, 2018. doi: 10.1109/COMST.2018.2862141
|
[9] |
X. Zhao, F. Du, S. Geng, et al., “Playback of 5G and beyond measured MIMO channels by an ANN-Based modeling and simulation framework,” IEEE J. Sel. Areas Commun., vol.38, no.9, pp.1945–1954, 2020. doi: 10.1109/JSAC.2020.3000827
|
[10] |
ETSI, “Study on channel model for frequencies from 0.5 to 100 GH,” Tech. Rep., 3GPP TR 38.901 version 15.0.0 Release 15, ETSI TR 138 901 V15.0.0 (2018-07), the 3rd Generation Partnership Project (3GPP), 2018.
|
[11] |
F. Ademaj, M. Taranetz and M. Rupp, “3GPP 3D MIMO channel model: A holistic implementation guideline for open source simulation tools,” EURASIP J. Wireless Com. Netw., vol.2016, article no.55, 2016.
|
[12] |
S. Jaeckel, L. Raschkowski, L. Thiele, et al., “QuaDRiGa− Quasi deterministic radio channel generator, user manual and documentation,” Tech. Rep., v2.2.0, Fraunhofer Heinrich Hertz Institute, 2019.
|
[13] |
J. Flordelis, X. Li, O. Edfors, et al., “Massive MIMO extensions to the COST 2100 channel model: Modeling and validation,” IEEE Transactions on Wireless Communications, vol.19, no.1, pp.380–394, 2020. doi: 10.1109/TWC.2019.2945531
|
[14] |
M. Peter, K. Sakaguchi, S. Jaeckel, et al., “Measurement campaigns and initial channel models for preferred suitable frequency ranges,” Document, ICT-671650-mmMAGIC/D2.1, available online: https://5g-mmmagic.eu/results/, 2016.
|
[15] |
“5G channel model for bands up to 100 GHz, v2.0,” White Paper, Aalto Univ., Espoo, Finland, 2016.
|
[16] |
S. Ju, O. Kanhere, Y. Xing, et al., “A millimeter-wave channel simulator NYUSIM with spatial consistency and human blockage,” 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, pp.1–6, 2019.
|
[17] |
S. Wu, C. Wang, e. M. Aggoune, et al., “A general 3-D non-stationary 5G wireless channel model,” IEEE Trans. Commun., vol.66, no.7, pp.3065–3078, 2018. doi: 10.1109/TCOMM.2017.2779128
|
[18] |
M. Alexander, P. Andrey, K. Ingolf, et al., “Quasi-deterministic approach to mmWave channel modeling in a non-stationary environment,” 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, pp.966–971, 2014.
|
[19] |
A. Maltsev, “Channel models for IEEE 802.11ay,” Document, 802.11-15/1150r9, IEEE, New York, NY, USA, 2016.
|
[20] |
Y. He, Y. Zhang, J. Zhang, et al., “Investigation and comparison of QuaDRiGa, NYUSIM and MG5G channel models for 5G wireless communications,” in Proc. IEEE Veh. Technol. Conf., Victoria, pp.1–5, 2020.
|
[21] |
T. S. Rappaport, G. R. MacCartney, M. K. Samimi, et al., “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol.63, no.9, pp.3029–3056, 2015. doi: 10.1109/TCOMM.2015.2434384
|
[22] |
M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical channel model for 5G wireless system design,” IEEE Trans. Micro. Theory and Techniques, vol.64, no.7, pp.2207–2225, 2016. doi: 10.1109/TMTT.2016.2574851
|
[23] |
S. Sun, G. R. MacCartney, M. K. Samimi, et al., “Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications,” 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, pp.1–7, 2015.
|
[24] |
T. S. Rappaport, Y. Xing, O. Kanhere, et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol.7, pp.78729–78757, 2019. doi: 10.1109/ACCESS.2019.2921522
|
[25] |
Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, pp.1–6, 2018.
|
[26] |
3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC), “Physical channels and modulation,” Tech. Specif., 3GPP TS 36.211 V12.1.0, 2014.
|
[27] |
A. Adhikary, E. Safadi, M. Samimi, et al., “Joint spatial division and multiplexing for mm-wave channels,” IEEE J. Sel. Areas Commun., vol.32, no.6, pp.1239–1255, 2014. doi: 10.1109/JSAC.2014.2328173
|
[28] |
T. S. Rappaport and S. Deng, “73 GHz wideband millimeter-wave foliage and ground reflection measurements and models,” 2015 IEEE International Conference on Communication Workshop, London, pp.1238–1243, 2015.
|
[29] |
C. Wang, J. Huang, H. Wang, et al., “6G Wireless channel measurements and models: Trends and challenges,” IEEE Veh. Technol. Mag., vol.15, no.4, pp.22–32, 2020. doi: 10.1109/MVT.2020.3018436
|
[30] |
X. You, C. Wang, J. Huang, et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China, Inf. Sci., vol.64, DOI: 10.1007/s11432-020-2955-6, 2021.
|
[31] |
H. Jiang, M. Mukherjee, J. Zhou, et al., “Channel modeling and characteristics for 6G wireless communications,” IEEE Network, vol.35, no.1, pp.296–303, 2021. doi: 10.1109/MNET.011.2000348
|
[32] |
W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol.34, no.3, pp.134–142, 2020. doi: 10.1109/MNET.001.1900287
|