Citation: | PANG Lihua, ZHANG Jin, ZHANG Yang, et al., “Investigation and Comparison of 5G Channel Models: From QuaDRiGa, NYUSIM, and MG5G Perspectives,” Chinese Journal of Electronics, vol. 31, no. 1, pp. 1-17, 2022, doi: 10.1049/cje.2021.00.103 |
This paper investigates and compares three channel models for the fifth generation (5G) wireless communications: the quasi deterministic radio channel generator (QuaDRiGa), the NYUSIM channel simulator model developed by New York University, and the more general 5G (MG5G) channel model. First, the characteristics of the modeling processes of the three models are introduced from the perspective of model framework. Then, the small-scale parameter modeling strategies of the three models are compared from space/time/frequency domains as well as polarization aspect. In particular, the drifting of small-scale parameters is introduced in detail. Finally, through the simulation results of angular power spectrum, Doppler power spectrum density, temporal autocorrelation function, power delay profile, frequency correlation function, channel capacity, and eigenvalue distribution, the three models are comprehensively investigated. According to the simulation results, we clearly analyze the impact of the modeling strategy on the three channel models and give certain evaluations and suggestion which lay a solid foundation for link and system-level simulations for 5G transmission algorithms.
[1] |
Y. Liu, C. Wang, C. F. Lopez, et al., “3D non-stationary wideband tunnel channel models for 5G high-speed train wireless communications,” IEEE Trans. Intell. Transp. Syst., vol.21, no.1, pp.259–272, 2020. doi: 10.1109/TITS.2019.2890992
|
[2] |
T. Zhou, H. Li, Y. Wang, et al., “Channel modeling for future high-speed railway communication systems: An survey,” IEEE Access, vol.7, pp.52818–52826, 2019. doi: 10.1109/ACCESS.2019.2912408
|
[3] |
A. Ghosh, A. Maeder, M. Baker, et al., “5G evolution: An view on 5G cellular technology beyond 3GPP release 15,” IEEE Access, vol.7, pp.127639–127651, 2019. doi: 10.1109/ACCESS.2019.2939938
|
[4] |
A. Maltsev, A. Pudeyev, I. Bolotin, et al., “Channel modeling and characterization,” V1.0, Document, FP7-ICT-608637/D5.1, MiWEBA, Breitengussbach, Germany, 2014.
|
[5] |
V. Nurmela, A. Karttunen, A. Roivainen, et al., “METIS channel models,” Document, FP7-ICT-317669-METIS/D1.4, Mobile and Wireless Communications Enablers for the Twenty-twenty Information Society (METIS), available online: https://metis2020.com/documents/deliverables, 2015.
|
[6] |
I. Tan, W. Tang, K. Laberteaux, et al., “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proc. IEEE Int. Conf. Commun., Beijing, pp.4882–4888, 2008.
|
[7] |
O. Renaudin, V. Kolmonen, P. Vainikainen, et al., “Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band,” IEEE Trans. Veh. Technol., vol.62, no.8, pp.3531–3540, 2013. doi: 10.1109/TVT.2013.2257905
|
[8] |
C. Wang, J. Bian, J. Sun, et al., “A survey of 5G channel measurements and models,” IEEE Commun. Surv. Tut., vol.20, no.4, pp.3142–3168, 2018. doi: 10.1109/COMST.2018.2862141
|
[9] |
X. Zhao, F. Du, S. Geng, et al., “Playback of 5G and beyond measured MIMO channels by an ANN-Based modeling and simulation framework,” IEEE J. Sel. Areas Commun., vol.38, no.9, pp.1945–1954, 2020. doi: 10.1109/JSAC.2020.3000827
|
[10] |
ETSI, “Study on channel model for frequencies from 0.5 to 100 GH,” Tech. Rep., 3GPP TR 38.901 version 15.0.0 Release 15, ETSI TR 138 901 V15.0.0 (2018-07), the 3rd Generation Partnership Project (3GPP), 2018.
|
[11] |
F. Ademaj, M. Taranetz and M. Rupp, “3GPP 3D MIMO channel model: A holistic implementation guideline for open source simulation tools,” EURASIP J. Wireless Com. Netw., vol.2016, article no.55, 2016.
|
[12] |
S. Jaeckel, L. Raschkowski, L. Thiele, et al., “QuaDRiGa− Quasi deterministic radio channel generator, user manual and documentation,” Tech. Rep., v2.2.0, Fraunhofer Heinrich Hertz Institute, 2019.
|
[13] |
J. Flordelis, X. Li, O. Edfors, et al., “Massive MIMO extensions to the COST 2100 channel model: Modeling and validation,” IEEE Transactions on Wireless Communications, vol.19, no.1, pp.380–394, 2020. doi: 10.1109/TWC.2019.2945531
|
[14] |
M. Peter, K. Sakaguchi, S. Jaeckel, et al., “Measurement campaigns and initial channel models for preferred suitable frequency ranges,” Document, ICT-671650-mmMAGIC/D2.1, available online: https://5g-mmmagic.eu/results/, 2016.
|
[15] |
“5G channel model for bands up to 100 GHz, v2.0,” White Paper, Aalto Univ., Espoo, Finland, 2016.
|
[16] |
S. Ju, O. Kanhere, Y. Xing, et al., “A millimeter-wave channel simulator NYUSIM with spatial consistency and human blockage,” 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, pp.1–6, 2019.
|
[17] |
S. Wu, C. Wang, e. M. Aggoune, et al., “A general 3-D non-stationary 5G wireless channel model,” IEEE Trans. Commun., vol.66, no.7, pp.3065–3078, 2018. doi: 10.1109/TCOMM.2017.2779128
|
[18] |
M. Alexander, P. Andrey, K. Ingolf, et al., “Quasi-deterministic approach to mmWave channel modeling in a non-stationary environment,” 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, pp.966–971, 2014.
|
[19] |
A. Maltsev, “Channel models for IEEE 802.11ay,” Document, 802.11-15/1150r9, IEEE, New York, NY, USA, 2016.
|
[20] |
Y. He, Y. Zhang, J. Zhang, et al., “Investigation and comparison of QuaDRiGa, NYUSIM and MG5G channel models for 5G wireless communications,” in Proc. IEEE Veh. Technol. Conf., Victoria, pp.1–5, 2020.
|
[21] |
T. S. Rappaport, G. R. MacCartney, M. K. Samimi, et al., “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol.63, no.9, pp.3029–3056, 2015. doi: 10.1109/TCOMM.2015.2434384
|
[22] |
M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical channel model for 5G wireless system design,” IEEE Trans. Micro. Theory and Techniques, vol.64, no.7, pp.2207–2225, 2016. doi: 10.1109/TMTT.2016.2574851
|
[23] |
S. Sun, G. R. MacCartney, M. K. Samimi, et al., “Synthesizing omnidirectional antenna patterns, received power and path loss from directional antennas for 5G millimeter-wave communications,” 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, pp.1–7, 2015.
|
[24] |
T. S. Rappaport, Y. Xing, O. Kanhere, et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol.7, pp.78729–78757, 2019. doi: 10.1109/ACCESS.2019.2921522
|
[25] |
Y. Xing and T. S. Rappaport, “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, pp.1–6, 2018.
|
[26] |
3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC), “Physical channels and modulation,” Tech. Specif., 3GPP TS 36.211 V12.1.0, 2014.
|
[27] |
A. Adhikary, E. Safadi, M. Samimi, et al., “Joint spatial division and multiplexing for mm-wave channels,” IEEE J. Sel. Areas Commun., vol.32, no.6, pp.1239–1255, 2014. doi: 10.1109/JSAC.2014.2328173
|
[28] |
T. S. Rappaport and S. Deng, “73 GHz wideband millimeter-wave foliage and ground reflection measurements and models,” 2015 IEEE International Conference on Communication Workshop, London, pp.1238–1243, 2015.
|
[29] |
C. Wang, J. Huang, H. Wang, et al., “6G Wireless channel measurements and models: Trends and challenges,” IEEE Veh. Technol. Mag., vol.15, no.4, pp.22–32, 2020. doi: 10.1109/MVT.2020.3018436
|
[30] |
X. You, C. Wang, J. Huang, et al., “Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,” Sci. China, Inf. Sci., vol.64, DOI: 10.1007/s11432-020-2955-6, 2021.
|
[31] |
H. Jiang, M. Mukherjee, J. Zhou, et al., “Channel modeling and characteristics for 6G wireless communications,” IEEE Network, vol.35, no.1, pp.296–303, 2021. doi: 10.1109/MNET.011.2000348
|
[32] |
W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol.34, no.3, pp.134–142, 2020. doi: 10.1109/MNET.001.1900287
|