Citation: | JIANG Yaoyao, CHU Pengcheng, MA Yulin, et al., “Search Algorithm Based on Permutation Group by Quantum Walk on Hypergraphes,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 626-634, 2022, doi: 10.1049/cje.2021.00.125 |
[1] |
Y. Q. Cai, X. W. Lu, and N. Jiang, “A survey on quantum image processing,” Chinese Journal of Electronics, vol.27, no.4, pp.718–727, 2018. doi: 10.1049/cje.2018.02.012
|
[2] |
J. Li, N. Li, and Y. Zhang, et al., “A survey on quantum cryptography,” Chinese Journal of Electronics, vol.27, no.2, pp.223–228, 2018. doi: 10.1049/cje.2018.01.017
|
[3] |
S. Wang, X. H. Song, and X. Niu, “Quantum computation and decision trees,” Chinese Journal of Electronics, vol.24, no.2, pp.321–325, 2015. doi: 10.1049/cje.2015.04.016
|
[4] |
Y. Xiong, X. Liang, and F. Y. Miao, “A novel Pauli evolutionary quantum algorithm for combinatorial optimization,” Chinese Journal of Electronics, vol.19, no.3, pp.399–402, 2010.
|
[5] |
J. Y. Peng and H. X. Lei, “Cyclic remote implementation of partially unknown quantum operations,” Chinese Journal of Electronics, vol.30, no.2, pp.378–383, 2021. doi: 10.1049/cje.2021.02.010
|
[6] |
E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Phys. Rev. A., vol.58, article no.915, 1998. doi: 10.1103/PhysRevA.58.915
|
[7] |
Y. Aharonov, D. Luiz, and Z. Nicim, “Quantum random walks,” Phys. Rev. A., vol.48, no.2, pp.1687–1690, 1993. doi: 10.1103/PhysRevA.48.1687
|
[8] |
C. Godsil, S. Kirkland, and S. Severini, et al., “Number-theoretic nature of communication in quantum spin systems,” Phys. Rev. L., vol.109, article no.050502, 2012. doi: 10.1103/PhysRevLett.109.050502
|
[9] |
S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. L., vol.91, no.20, article no.207901, 2003. doi: 10.1103/PhysRevLett.91.207901
|
[10] |
A. M. Childs, “Universal computation by quantum walk,” Phys. Rev. L., vol.102, article no.180501, 2009. doi: 10.1103/PhysRevLett.102.180501
|
[11] |
A. M. Childs, “On the relationship between continuous- and discrete-time quantum walk,” Commun. Math. Phys., vol.294, pp.581–603, 2010. doi: 10.1007/s00220-009-0930-1
|
[12] |
D. Bacon and W. V. Dam, “Recent progress in quantum algorithms,” Communications of the ACM, vol.53, pp.84–93, 2010.
|
[13] |
A. Patel and M. A. Rahaman, “Search on a hypercubic lattice using a quantum random walk,” Phys. Rev. A., vol.82, article no.032330, 2010. doi: 10.1103/PhysRevA.82.032330
|
[14] |
S. D. Berry and J. B. Wang, “Two-particle quantum walks: Entanglement and graph isomorphism testing,” Phys. Rev. A., vol.83, article no.042317, 2011. doi: 10.1103/PhysRevA.83.042317
|
[15] |
V. Potoček, A. Gábris, and T. Kiss, “Optimized quantum random-walk search algorithms on the hypercube,” Phys. Rev. A., vol.79, article no.012325, 2009. doi: 10.1103/PhysRevA.79.012325
|
[16] |
A. Schreiber, K. N. Cassemiro, and V. Potoček, “Photons walking the line: A quantum walk with adjustable coin operations,” Phys. Rev. L., vol.104, article no.050502, 2010. doi: 10.1103/PhysRevLett.104.050502
|
[17] |
F. Zaghringer, G. Kirchmair, and R. Gerritsma, “Realization of a quantum walk with one and two trapped ions,” Phys. Rev. L., vol.104, article no.100503, 2010. doi: 10.1103/PhysRevLett.104.100503
|
[18] |
L. Sansoni, F. Sciarrino, and G. Vallone, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. L., vol.108, article no.010502, 2012. doi: 10.1103/PhysRevLett.108.010502
|
[19] |
B. Kollár, T. Kiss, J. Novotn’y, et al., “Asymptotic dynamics of coined quantum walks on percolation graphs,” Physical Review Letters, vol.108, no.23, article no.230505, 2012. doi: 10.1103/PhysRevLett.108.230505
|
[20] |
O. Mülken and A. Blumen, “Continuous-time quantum walks: Models for coherent transport on complex networks,” Physics Reports, vol.502, pp.37–87, 2011. doi: 10.1016/j.physrep.2011.01.002
|
[21] |
F. Caruso, “QSTAR. Universally optimal noisy quantum walks on complex networks,” New J. Phys., vol.16, article no.055015, 2014. doi: 10.1088/1367-2630/16/5/055015
|
[22] |
N. Shenvi, J. Kempe, and W. K. Birgitta, “Quantum random-walk search algorithm,” Phys. Rev. A, vol.67, article no.052307, 2003. doi: 10.1103/PhysRevA.67.052307
|
[23] |
H. Y. Ma, Z. Xin, P. G. Xu, et al., “Quantum secure primary communication based on quantum information compression,” Wireless Personal Communications, vol.113, pp.2203–2214, 2020. doi: 10.1007/s11277-020-07319-w
|
[24] |
V. Dunjko and H. J. Briegel, “Quantum mixing of Markov chains for special distributions,” New Journal of Physics, vol.17, article no.073004, 2015. doi: 10.1088/1367-2630/17/7/073004
|
[25] |
D. Orsucci, H. J. Briegel, and V. Dunjko, “Faster quantum mixing for slowly evolving sequences of Markov Chains,” Quantum, vol.2, article no.105, 2018. doi: 10.22331/q-2018-11-09-105
|
[26] |
S. Chakraborty, L. Novo, A. Ambainis, et al., “Spatial search by quantum walk is optimal for almost all graphs,” Physical Review Letters, vol.116, no.10, article no.100501, 2016. doi: 10.1103/PhysRevLett.116.100501
|
[27] |
S. Chakraborty, L. Novo, S. D. Giorgio, et al., “Optimal quantum spatial search on random temporal networks,” Physical Review Letters, vol.119, no.22, article no.220503, 2017. doi: 10.1103/PhysRevLett.119.220503
|
[28] |
A. Glos, A. Krawiec, R. Kukulski, et al., “Vertices cannot be hidden from quantum spatial search for almost all random graphs,” Quantum Information Processing, vol.17, no.4, pp.1–15, 2018.
|