Citation: | NIU Zhongqian, ZHANG Bo, DAI Bingli, et al., “220 GHz Multi Circuit Integrated Front End Based on Solid-State Circuits for High Speed Communication System,” Chinese Journal of Electronics, vol. 31, no. 3, pp. 569-580, 2022, doi: 10.1049/cje.2021.00.295 |
[1] |
Paul F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press, pp.331–358, 1997.
|
[2] |
D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag Berlin Heidelberg, pp.1–38, 2003.
|
[3] |
M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, vol.1, no.2, pp.97–105, 2007. doi: 10.1038/nphoton.2007.3
|
[4] |
D. Graham-Rowe, “Terahertz takes to the stage,” Nature Photonics, vol.1, no.2, pp.75–77, 2007. doi: 10.1038/nphoton.2006.85
|
[5] |
S. Ergün and S. Sönmez, “Terahertz technology for military applications,” Journal of Military and Information Science, vol.3, no.1, pp.13–16, 2015. doi: 10.17858/jmisci.58124
|
[6] |
L. H. Eadie, C. B. Reid, A. J. Fitzgerald, et al., “Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis,” Expert Systems with Applications, vol.40, no.6, pp.2043–2050, 2013. doi: 10.1016/j.eswa.2012.10.019
|
[7] |
H. Takahashi, T. Kosugi, A. Hirata, et al., “120-GHz-band fully integrated wireless link using QSPK for realtime 10-Gbit/s transmission,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.12, pp.4745–4753, 2013. doi: 10.1109/TMTT.2013.2285354
|
[8] |
J. D. Albrecht, M. J. Rosker, H. B. Wallace, et al, “THz electronics projects at DARPA: Transistors, TMICs, and amplifiers,” IEEE MTT-S International Microwave Symposium Digest, California, vol.29, no.16, pp.1118–1121, 2010.
|
[9] |
R. F. Jarnot, V. S. Perun, and M. J. Schwartz, “Radiometric and spectral performance and calibration of the GHz bands of EOS MLS,” IEEE Transactions on Geoscience and Remote Sensing, vol.44, no.5, pp.1131–1143, 2006. doi: 10.1109/TGRS.2005.863714
|
[10] |
S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum, vol.41, no.6, pp.58–60, 2004.
|
[11] |
T. Nagatsuma and G. Carpintero, “Recent progress and future prospect of photonics-enabled terahertz communications research,” IEICE Transactions on Electronics, vol.98, no.12, pp.1060–1070, 2015.
|
[12] |
K. -C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microwave Magazine, vol.12, no.4, pp.108–116, 2011. doi: 10.1109/MMM.2011.940596
|
[13] |
R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, et al., “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas and Propagation Magazine, vol.49, no.6, pp.24–39, 2007. doi: 10.1109/MAP.2007.4455844
|
[14] |
B. Thomas, B. Alderman, D. Matheson, et al., “A combined 380 GHz mixer/doubler circuit based on planar Schottky diodes,” IEEE Microwave and Wireless Components Letters, vol.18, no.5, pp.353–355, 2008. doi: 10.1109/LMWC.2008.922130
|
[15] |
J. Treuttel, A. Maestrini, B. Alderman, et al., “Design of a combined tripler-subharmonic mixer at 330 GHz for multipixel application using European Schottky diodes,” in Proceedings of 21st International Symposium on Space Terahertz Technology, Oxford, UK, pp.414−417, 2010.
|
[16] |
B. Thomas, A. Maestrini, and G. Beaudin, “A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes,” IEEE Microwave and Wireless Components Letters, vol.15, no.12, pp.865–867, 2005. doi: 10.1109/LMWC.2005.859992
|
[17] |
P. J. Sobis, N. Wadefalk, A. Emrich, et al., “A broadband, low noise, integrated 340 GHz Schottky diode receiver,” IEEE Microwave and Wireless Components Letters, vol.22, no.7, pp.366–368, 2012. doi: 10.1109/LMWC.2012.2202280
|
[18] |
J. Treuttel, L. Gatilova, A. Maestrini, et al., “A 520–620-GHz Schottky receiver front-end for planetary science and remote sensing with 1070 K–1500 K DSB noise temperature at room temperature,” IEEE Transactions on Terahertz Science and Technology, vol.6, no.1, pp.148–155, 2015.
|
[19] |
Z. Chen, B. Zhang, Y. Fan, et al., “Design of a low noise 190–240 GHz subharmonic mixer based on 3D geometric modeling of Schottky diodes and CAD load-pull techniques,” IEICE Electronics Express, vol.13, no.16, article no.13.20160604, 2016. doi: 10.1587/elex.13.20160604
|
[20] |
A. Y. Tang, V. Drakinskiy, K. Yhland, et al., “Analytical extraction of a Schottky diode model from broadband S-parameters,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.5, pp.1870–1878, 2013. doi: 10.1109/TMTT.2013.2251655
|
[21] |
C. Guo, X. B. Shang, M. J. Lancaster, et al., “A 290−310 GHz single sideband mixer with integrated waveguide filters,” IEEE Transactions on Terahertz Science and Technology, vol.8, no.4, pp.446–454, 2018. doi: 10.1109/TTHZ.2018.2841771
|
[22] |
Y. Yang, B. Zhang, X. Zhao, et al., “220 GHz wideband integrated receiver front end based on planar Schottky diodes,” Microwave and Optical Technology Letters, vol.62, no.8, pp.2737–2746, 2020. doi: 10.1002/mop.32300
|
[23] |
J. Reed, “The multiple branch waveguide coupler,” IRE Transactions on Microwave Theory and Techniques, vol.6, no.4, pp.398–403, 1958. doi: 10.1109/TMTT.1958.1125213
|
[24] |
A. Gonzalez, T. Kojima, K. Kaneko, et al., “275−500 GHz waveguide diplexer to combine local oscillators for different frequency bands,” IEEE Transactions on Terahertz Science and Technology, vol.7, no.6, pp.669–676, 2017. doi: 10.1109/TTHZ.2017.2758789
|
[25] |
H. Rashid, V. Desmaris, V. Belitsky, et al., “Design of wideband waveguide hybrid with ultra-low amplitude imbalance,” IEEE Transactions on Terahertz Science and Technology, vol.6, no.1, pp.83–90, 2016. doi: 10.1109/TTHZ.2015.2502070
|
[26] |
H. Rashid, D. Meledin, V. Desmaris, et al., “Novel waveguide 3 dB hybrid with improved amplitude imbalance,” IEEE Microwave and Wireless Components Letters, vol.24, no.4, pp.212–214, 2014. doi: 10.1109/LMWC.2013.2293671
|
[27] |
Z. Niu, B. Zhang, Y. Fan, et al., “Mode Analyzing Method for Fast Design of Branch Waveguide Coupler,” IEEE Transactions on Microwave Theory and Techniques, vol.67, no.12, pp.4733–4740, 2019. doi: 10.1109/TMTT.2019.2944598
|
[28] |
P. J. Sobis, J. Stake, and A. Emrich, “A 170 GHz 45° hybrid for submillimeter wave sideband separating subharmonic mixers,” IEEE Microwave and Wireless Components Letters, vol.18, no.10, pp.680–682, 2008. doi: 10.1109/LMWC.2008.2003463
|
[29] |
Z. Niu, B. Zhang, Y. Fan, et al., “A novel 3 dB waveguide hybrid coupler for THz operation,” IEEE Microwave and Wireless Components Letters, vol.4, no.29, pp.273–275, 2019.
|
[30] |
P. Jarry and J. Beneat, Design and Realizations of Miniaturized Fractal Microwave and RF Filters, John Wiley and Sons Ltd., pp.17−21, 2009.
|
[31] |
H. Xiao, “Research on W-band quasi elliptic waveguide bandpass filter”, Master’s Thesis, Taiyuan: North University of China, pp.10−12, 2019.
|
[32] |
G. Wolf, G. Prigent, E. Rius, et al., “Band-pass coplanar filters in the G-frequency band,” IEEE Microwave and Wireless Components Letters, vol.15, no.11, pp.799–801, 2005. doi: 10.1109/LMWC.2005.859010
|
[33] |
S. Liu, Y. Zhang, L. Li, et al., “220 GHz band-pass filter based on circular resonance cavities with low loss,” 2015 European Microwave Conference (EuMC), Paris, France, pp.1077−1079, 2015.
|
[34] |
B. Thomas, S. Rea, B. Moyna, et al., “A 320-360 GHz subharmonically pumped image rejection mixer using planar Schottky diodes,” IEEE Microwave and Wireless Components Letters, vol.19, no.2, pp.101–103, 2009. doi: 10.1109/LMWC.2008.2011332
|
[35] |
T. Bryllert, V. Drakinskiy, K. B. Cooper, et al., “Integrated 200-240-GHz FMCW radar transceiver module,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.10, pp.3808–3815, 2013. doi: 10.1109/TMTT.2013.2279359
|