Citation: | DU Yuxiao and CHEN Yihang, “Time Optimal Trajectory Planning Algorithm for Robotic Manipulator Based on Locally Chaotic Particle Swarm Optimization,” Chinese Journal of Electronics, vol. 31, no. 5, pp. 906-914, 2022, doi: 10.1049/cje.2021.00.373 |
[1] |
F. J. Abu-Dakka, F. Rubio, F. Valero, et al., “Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles,” European Journal of Mechanics A/Solids, vol.42, pp.210–218, 2013. doi: 10.1016/j.euromechsol.2013.05.007
|
[2] |
L. Cui, H. Wang, and W. Chen, “Trajectory planning of a spatial flexible manipulator for vibration suppression,” Robotics and Autonomous Systems, vol.123, article no.103316, 2019.
|
[3] |
L. Jin, S. Li, J. Yu, et al., “Robot manipulator control using neural networks: A survey,” Neurocomputing, vol.285, pp.23–34, 2018. doi: 10.1016/j.neucom.2018.01.002
|
[4] |
L. Tang, X. Tang, X. Jiang, et al., “Dynamic trajectory planning study of planar two-dof redundantly actuated cable-suspended parallel robots,” Mechatronics, vol.30, pp.187–197, 2015. doi: 10.1016/j.mechatronics.2015.07.005
|
[5] |
Y. Mu, L. Zhang, X. Chen, et al., “Optimal trajectory planning for robotic manipulators using chicken swarm optimization,” in Proc. of 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, pp.369–373, 2016.
|
[6] |
Y. Yang, Z. Li, X. Yu, et al., “A trajectory planning method for robot scanning system using mask R-CNN for scanning objects with unknown model,” Neurocomputing, vol.404, pp.329–339, 2020. doi: 10.1016/j.neucom.2020.04.059
|
[7] |
N. Zeng, H. Zhang, Y. Chen, et al., “Path planning for intelligent robot based on switching local evolutionary PSO algorithm,” Assembly Automation, vol.36, no.2, pp.120–126, 2016. doi: 10.1108/AA-10-2015-079
|
[8] |
J. Wei, M. Jin, and Y. Liu, “A new method to reduce energy in trajectory planning,” in Proc. of 2020 6th International Conference on Control, Automation and Robotics, Singapore, pp.1–6, 2016.
|
[9] |
O. Avram and A. Valente, “Trajectory planning for reconfigurable industrial robots designed to operate in a high precision manufacturing industry,” Procedia CIRP, vol.57, pp.461–466, 2016. doi: 10.1016/j.procir.2016.11.080
|
[10] |
W. Liu, Z. Wang, Y. Yuan, et al., “A novel sigmoid-function-based adaptive weighted particle swarm optimizer,” IEEE Transactions on Cybernetics, vol.51, no.2, pp.1085–1093, 2021. doi: 10.1109/TCYB.2019.2925015
|
[11] |
S. Piao, Q. ZHONG, and Y. Liu, “The research of optimal motion planning for robot in complex environment,” Chinese Journal of Electronics, vol.20, no.4, pp.637–640, 2011.
|
[12] |
G. Antonelli, S. Chiaverini, G. P. Gerio, M. Palladino, et al., “SmartMove4: An industrial implementation of trajectory planning for robots,” Industrial Robot, vol.34, no.3, pp.217–224, 2007. doi: 10.1108/01439910710738854
|
[13] |
A. Reiter, A. Müller, and H. Gattringer, “Inverse kinematics in minimum-time trajectory planning for kinematically redundant manipulators,” in Proc. of IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, pp.6873–6878, 2016.
|
[14] |
J. Kim, S. Kim, S. Kim, et al., “A practical approach for minimum-time trajectory planning for industrial robots,” Industrial Robot, vol.37, no.1, pp.51–61, 2010. doi: 10.1108/01439911011009957
|
[15] |
A. Aloulou and O. Boubaker, Motion and Operation Planning of Robotic Systems, Springer, Cham, pp.385–415, 2015.
|
[16] |
A. Valente, S. Baraldo, and E. Carpanzano, “Smooth trajectory generation for industrial robots performing high precision assembly processes,” CIRP Annals, vol.66, pp.17–20, 2017. doi: 10.1016/j.cirp.2017.04.105
|
[17] |
R. Menasri, H. Oulhadj, B. Daachi, et al., “Smooth trajectory planning for robot using particle swarm optimization,” in Proc. of International Conference on Swarm Intelligence Based Optimization, Mulhouse, France, pp.50–59, 2014.
|
[18] |
W. Zhang and S. Fu, “Time-optimal trajectory planning of dulcimer music robot based on PSO algorithm,” in Proc. of 2020 Chinese Control And Decision Conference, Hefei, China, pp.4769–4774, 2020.
|
[19] |
M. Gao, P. Ding, and Y. Yang, “Time-optimal rrajectory planning of industrial robots based on particle swarm optimization,” in Proc. of 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, pp.1934–1939, 2015.
|
[20] |
C. Liu, G. Cao, Y. Qu, et al., “An improved PSO algorithm for time-optimal trajectory planning of Delta robot in intelligent packaging,” The International Journal of Advanced Manufacturing Technology, vol.107, no.3, pp.1091–1099, 2020.
|
[21] |
K. Petrinec and Z. Kovacic, “Trajectory planning algorithm based on the continuity of jerk,” in Proc. of 2007 Mediterranean Conference on Control & Automation, Athens, Greece, pp.1–5, 2007.
|
[22] |
I. U. Rahman, Z. Wang, W. Liu, et al., “An N-state markovian jumping particle swarm optimization algorithm,” IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol.51, no.11, pp.6626–2238, 2021. doi: 10.1109/TSMC.2019.2958550
|
[23] |
T. Yan, F. Liu, and B. Chen, “New particle swarm optimisation algorithm with Hénon chaotic map structure,” Chinese Journal of Electronics, vol.26, no.4, pp.747–753, 2017. doi: 10.1049/cje.2017.06.006
|
[24] |
N. Zeng, D. Song, H. Li, et al., “A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution,” Neurocomputing, vol.432, pp.170–182, 2020.
|
[25] |
N. Zeng, H. Qiu, Z. Wang, et al., “A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease,” Neurocomputing, vol.320, pp.195–202, 2018. doi: 10.1016/j.neucom.2018.09.001
|
[26] |
X. Huang, P. Jia, B. Liu, et al., “Control of Hénon chaotic systems by chaotic particle swarm optimization,” in Proc. of 9th IEEE International Conference on Cognitive Informatics, Beijing, China, pp.117–121, 2010.
|
[27] |
W. Hong, “Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model,” Energy Conversion & Management, vol.50, pp.105–117, 2009.
|
[28] |
M. Li, W. Hong, and H. Kang, “Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm,” Neurocomputing, vol.99, pp.230–240, 2013. doi: 10.1016/j.neucom.2012.08.002
|
[29] |
X. Zou, W. Liu, and G. Feng, “Applying chaotic maps to interleaving scheme design in BICM-ID,” Chinese Journal of Electronics, vol.19, no.3, pp.521–524, 2010.
|
[30] |
G. Kaddoum, “Wireless chaos-based communication systems: A comprehensive survey,” IEEE Access, vol.4, pp.2621–2648, 2016. doi: 10.1109/ACCESS.2016.2572730
|
[31] |
X. Yi, “Hash function based on chaotic tent maps,” IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, vol.52, no.6, pp.354–357, 2005. doi: 10.1109/TCSII.2005.848992
|
[32] |
J. Zhao, H. Wang, W. Liu, et al., “A learning-based multiscale modelling approach to real-time serial manipulator kinematics simulation,” Neurocomputing, vol.390, pp.280–293, 2020. doi: 10.1016/j.neucom.2019.04.101
|
[33] |
H. N. Nguyen, J. Zhou, and H. J. Kang, “A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network,” Neurocomputing, vol.151, pp.996–1005, 2015. doi: 10.1016/j.neucom.2014.03.085
|
[34] |
Ü. Dinȩr and M. ȩvik, “Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of Bézier curves and cubic polynomials,” Mechanism and Machine Theory, vol.132, pp.248–263, 2019. doi: 10.1016/j.mechmachtheory.2018.11.009
|