Citation: | JIANG Niu, ZHAO Min, YANG Zhiyao, et al., “Characterization and Properties of Bent-Negabent Functions,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 786-792, 2022, doi: 10.1049/cje.2021.00.417 |
[1] |
O. S. Rothaus, “On “bent” functions,” Journal of Combinatorial Theory, Series A, vol.20, no.3, pp.300–305, 1976. doi: 10.1016/0097-3165(76)90024-8
|
[2] |
C. Carlet and S. Mesnager, “Four decades of research on bent functions,” Designs, Codes and Cryptography, vol.78, no.1, pp.5–50, 2016. doi: 10.1007/s10623-015-0145-8
|
[3] |
C. Riera and M. G. Parker, “Generalized bent criteria for Boolean functions (I),” IEEE Transactions on Information Theory, vol.52, no.9, pp.4142–4159, 2006. doi: 10.1109/TIT.2006.880069
|
[4] |
P. Stănică, B. Mandal, and S. Maitra, “The connection between quadratic bent-negabent functions and the Kerdock code,” Applicable Algebra in Engineering, Communication and Computing, vol.30, no.5, pp.387–401, 2019. doi: 10.1007/s00200-019-00380-4
|
[5] |
F. Zhang, Y. Wei, and E. Pasalic, “Constructions of bent-Negabent functions and their relation to the completed maiorana—McFarland class,” IEEE Transactions on Information Theory, vol.61, no.3, pp.1496–1506, 2015. doi: 10.1109/TIT.2015.2393879
|
[6] |
Y. Zhou and L. Qu, “Constructions of negabent functions over finite fields,” Cryptography and Communications, vol.9, no.2, pp.165–180, 2017. doi: 10.1007/s12095-015-0167-0
|
[7] |
B. Mandal, S. Maitra, and P. Stănică, “On the existence and non-existence of some classes of bent-negabent functions,” Applicable Algebra in Engineering, Communication and Computing, vol.33, no.3, pp.237–260, 2022. doi: 10.1007/s00200-020-00444-w
|
[8] |
P. Stanica, S. Gangopadhyay, A. Chaturvedi, et al., “Investigations on bent and negabent functions via the nega-hadamard transform,” IEEE Transactions on Information Theory, vol.58, no.6, pp.4064–4072, 2012. doi: 10.1109/TIT.2012.2186785
|
[9] |
M. G. Parker and A. Pott, “On Boolean functions which are bent and negabent,” in Proceedings of the 2007 International Conference on Sequences, Subsequences, and Consequences, Los Angeles, CA, USA, pp.9–23, 2007.
|
[10] |
S. Sarkar, “Characterizing negabent Boolean functions over finite fields,” Sequences and Their Applications - SETA 2012, Berlin, Germany, pp.77–88, 2012.
|
[11] |
D. Huang, C. Tang, Y. Qi, et al., “New quadratic bent functions in polynomial forms with coefficients in extension fields,” Applicable Algebra in Engineering, Communication and Computing, vol.30, no.4, pp.333–347, 2019. doi: 10.1007/s00200-018-0376-9
|
[12] |
K. C. Gupta and P. Sarkar, “Toward a general correlation theorem,” IEEE Transactions on Information Theory, vol.51, no.9, pp.3297–3302, 2005. doi: 10.1109/TIT.2005.853326
|
[13] |
Y. Yuan, Y. Tong, and H. Zhang, “Complete mapping polynomials over finite field F16,” in Proceedings of the 1st International Workshop on Arithmetic of Finite Fields, Madrid , Spain, pp.147–158, 2007.
|
[14] |
W. Su, A. Pott, and X. Tang, “Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree,” IEEE Transactions on Information Theory, vol.59, no.6, pp.3387–3395, 2013. doi: 10.1109/TIT.2013.2245938
|
[15] |
K. U. Schmidt, M. G. Parker, and A. Pott. “Negabent functions in the Maiorana–McFarland class.” Sequences and Their Applications-SETA 2008. Springer, Berlin, Heidelberg, pp.390–402, 2008.
|
[16] |
C. Carlet, “On the Secondary Constructions of Resilient and Bent Functions,” Coding, Cryptography and Combinatorics, Birkhäuser Verlag, Basel, pp.3–28, 2004.
|
[17] |
C. Carlet, F. R. Zhang, Y. P. Hu, et al., “Secondary constructions of bent functions and their enforcement,” Advances in Mathematics of Communications, vol.6, no.3, pp.305–314, 2012. doi: 10.3934/amc.2012.6.305
|
[18] |
S. Mesnager, B. ben Moussat, and Z. P. Zhuo, “Further results on bent-negabent Boolean functions,” Lecture Notes in Electrical Engineering, Springer, Singapore, pp.47–66, 2021.
|