Citation: | ZHENG Nenggan, MA Qian, WANG Xuefei, et al., “A Simplified Computational Model of Mushroom Body for Tethered Bees' Abdominal Swing Behavior Induced by Optic Flow,” Chinese Journal of Electronics, vol. 30, no. 2, pp. 296-302, 2021, doi: 10.1049/cje.2021.01.001 |
[1] |
O.J. Loukola, C.J. Perry, L. Coscos, et al., "Bumblebees show cognitive flexibility by improving on an observed complex behavior", Science, Vol. 355, No. 6327, pp. 833–836, 2017. doi: 10.1126/science.aag2360
|
[2] |
S. Alem, C.J. Perry, X.F. Zhu, et al., "Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect", Plos Biology, Vol. 14, No. 10, DOI: 10.1371/journal.pbio.1002564, 2016.
|
[3] |
M.V. Srinivasan, "Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics", Physiological Reviews, Vol. 91, No. 2, pp. 413–460, 2011. doi: 10.1152/physrev.00005.2010
|
[4] |
M.V. Srinivasan, "Visual control of navigation in insects and its relevance for robotics", Current Opinion in Neurobiology, Vol. 21, No. 4, pp. 535–543, 2011. doi: 10.1016/j.conb.2011.05.020
|
[5] |
J.C. Theobald, D.L. Ringach, M.A. Frye, et al., "Dynamics of optomotor responses in Drosophila to perturbations in optic flow", Journal of Experimental Biology, Vol. 213, No. 8, pp. 1366–1375, 2010. doi: 10.1242/jeb.037945
|
[6] |
A.E. Honkanen, J. Takalo, K. Heimonen, et al., "Cockroach optomotor responses below single photon level", Journal of Experimental Biology, Vol. 217, No. 23, pp. 4262–4268, 2014. doi: 10.1242/jeb.112425
|
[7] |
V. Nityananda, G. Tarawneh, S. Errington, et al., "The optomotor response of the praying mantis is driven predominantly by the central visual field", Journal of Comparative Physiology A, Vol. 203, No. 1, pp. 77–87, 2017. doi: 10.1007/s00359-016-1139-3
|
[8] |
M. Egelhaaf, "Visual afferences to flight steering muscles controlling optomotor responses of the fly", Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology, Vol. 165, No. 6, pp. 719–730, 1989. doi: 10.1007/BF00610871
|
[9] |
A.K. Warzecha and M. Egelhaaf, "Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable", Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 351, No. 1347, pp. 1579–1591, 1996. doi: 10.1098/rstb.1996.0142
|
[10] |
A.K. Warzecha and M. Egelhaaf, "On the performance of biological movement detectors and ideal velocity sensors in the context of optomotor course stabilization", Visual Neuroscience, Vol. 15, No. 1, pp. 113–11, 1998. doi: 10.1017/S0952523898151052
|
[11] |
A. Kikuchi, S. Ohashi, N. Fuse, et al., "Experience-dependent plasticity of the optomotor response in Drosophila melanogaster", . Developmental Neuroscience, Vol. 34, pp. 533–542, 2012. doi: 10.1159/000346266
|
[12] |
E. Naveed, H.G. Krapp and R.J. Tanaka, "Closed-loop response properties of a visual interneuron involved in fly optomotor control", Frontiers in Neural Circuits, Vol. 7, DOI: 10.3389/fncir.2013.00050, 2013.
|
[13] |
M.R. Ibbotson, "Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee", Proceedings: Biological Sciences, Vol. 268, No. 1482, pp. 2195–2201, 2001. doi: 10.1098/rspb.2001.1770
|
[14] |
A. Cope, C. Sabo, E. Vasilaki, et al., "A neural model of the optomotor system accounts for ordered responses to decreasing stimulus spatial frequencies", Bmc Neuroscience, Vol. 16, No. S1, pp. 1–2, 2015. http://pubmedcentralcanada.ca/pmcc/articles/PMC4697642/
|
[15] |
A.C. Paulk, A.M. Dacks, J. Phillips-Portillo, et al., "Visual processing in the central bee brain", Journal of Neuroscience, Vol. 29, No. 32, pp. 9987–9999, 2009. doi: 10.1523/JNEUROSCI.1325-09.2009
|
[16] |
A.C. Paulk, J. Phillips-Portillo, A.M. Dacks, et al., "The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain", The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, Vol. 28, No. 25, pp. 6319–6332, 2008. doi: 10.1523/JNEUROSCI.1196-08.2008
|
[17] |
G.K. Taylor, "Mechanics and aerodynamics of insect flight control", Biological Reviews of the Cambridge Philosophical Society, Vol. 76, No. 4, pp. 449–471, 2010. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ028423279
|
[18] |
W. Dickson, A. Straw, C. Poelma, et al., "An integrative model of insect flight control (Invited)", Proc AIAA Aerospace Sciences Meeting & Exhibit, 2006. doi: 10.2514/6.2006-34
|
[19] |
N.S. Bar, S. Skogestad, J.M. Al, et al., "A sensory-motor control model of animal flight explains why bats fly differently in light versus dark", Plos Biology, Vol. 13, No. 1, DOI: 10.1371/journal.pbio.1002046, 2015.
|
[20] |
M. Spuler, S. Nagel and W. Rosenstiel, "A spiking neuronal model learning a motor control task by reinforcement learning and structural synaptic plasticity", International Joint Conference on Neural Networks IEEE, pp. 1–8, 2015. http://ieeexplore.ieee.org/document/7280521
|
[21] |
R.B. Gillespie, A.H. Ghasemi and J. Freudenberg, "Human motor control and the internal model principle", IFAC-PapersOnLine, Vol. 49, No. 19, pp. 114–119, 2016. doi: 10.1016/j.ifacol.2016.10.471
|
[22] |
S.T. Chen and D.P. Tan, "SA-ANN based cognition mechanism modeling and the improved recognition algorithm", Chinese Journal of Electronics, Vol. 8, pp. 2011–2019, 2018. http://www.researchgate.net/publication/322272982_A_SA-ANN-Based_Modeling_Method_for_Human_Cognition_Mechanism_and_the_PSACO_Cognition_Algorithm
|
[23] |
H.L. Luo, K. Tong and F.S. Kong, "The progress of human action recognition in videos based on deep learning: A review", Chinese Journal of Electronics, Vol. 47, No. 5, pp. 1162–1173, 2019. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXU201905025.htm
|
[24] |
S.L. Wang, H.H. Chi, Z.Q. Yuan, et al., "Emotion recognition using cloud model", Chinese Journal of Electronics, Vol. 28, No. 3, pp. 470–474, 2019. doi: 10.1049/cje.2018.09.020
|
[25] |
P. Arena, L. Patane, V. Stornanti, et al., "Modeling the insect mushroom bodies: Application to a delayed match-to-sample task", Neural Networks, Vol. 41, pp. 202–211, 2013. doi: 10.1016/j.neunet.2012.11.013
|
[26] |
M.G. Velarde, V.A. Makarov, N.P. Castellanos, et al., "Mathematical approach to sensory motor control and memory", in: Paolo Arena, Luca Patanè (editors), Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots, Cognitive Systems Monographs book series, Springer, pp. 219–268, 2009.
|
[27] |
P. Arena, L. Patane and P.S. Termini, "Learning expectation in insects: A recurrent spiking neural model for spatio-temporal representation", Networks the Official Journal of the Int. Neural Network Society, Vol. 32, No. 2, pp. 35–45, 2012. http://www.ncbi.nlm.nih.gov/pubmed/22386503
|
[28] |
P. Arena, S. Caccamo, L. Patane, et al., "A computational model for motor learning in insects", International Joint Conference on Neural Networks, pp. 1–8, 2013. http://ieeexplore.ieee.org/document/6706897/
|
[29] |
P. Ardin, F. Peng, M. Mangan, et al., "Using an insect mushroom body circuit to encode route memory in complex natural environments", Plos Computational Biology, Vol. 12, No. 2, DOI: 10.1371/journal.pcbi.1004683, 2016.
|
[30] |
T. Faber, J. Joerges and R. Menzel, "Associative learning modifies neural representations of odors in the insect brain", Nature Neuroscienc, Vol. 2, No. 1, pp. 74–78, 1999. doi: 10.1038/4576
|
[31] |
J. Wessnitzer and B. Webb, "A neural model of cross-modal association in insects", European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 415–420, 2007. http://www.researchgate.net/publication/221165098_A_neural_model_of_cross-modal_association_in_insects
|
[32] |
J. Wessnitzer, B. Webb and D. Smith, "A model of non-elemental associative learning in the mushroom body neuropil of the insect brain", International Conference on Adaptive and Natural Computing Algorithms, pp. 488–497, 2007. http://www.springerlink.com/content/t52p875261375770
|
[33] |
F. Peng and L. Chittka, "A simple computational model of the bee mushroom body can explain seemingly complex forms of olfactory learning and memory", Current Biology, Vol. 27, No. 2, pp. 224–230, 2017. doi: 10.1016/j.cub.2016.10.054
|
[34] |
J. Wessnitzer, J.M. Young, J.D. Armstrong, et al., "A model of non-elemental olfactory learning in Drosophila", Journal of Computational Neuroscience, Vol. 32, No. 2, pp. 197–212, 2012. doi: 10.1007/s10827-011-0348-6
|
[35] |
W. Maass, "Networks of spiking neurons: The third generation of neural network models", Neural Networks, Vol. 10, No. 9, pp. 1659–1671, 1997. doi: 10.1016/S0893-6080(97)00011-7
|
[36] |
M. Zhang, Z.H. Gu and G. Pan, "A survey of neuromorphic computing based on spiking neural networks", Chinese Journal of Electronics, Vol. 27, No. 4, pp. 667–674, 2018. doi: 10.1049/cje.2018.05.006
|
[37] |
X.D. Gu and L.M. Zhang, "Orientation detection and attention selection based unit-linking PCNN", Int. Conf. on Neural Networks & Brain IEEE, pp. 1328–1333, 2006. http://ieeexplore.ieee.org/document/1614877/
|
[38] |
K. Pfeiffer and M. Kinoshita, "Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus)", The Journal of Comparative Neurology, Vol. 520, No. 2, pp. 212–229, 2012. doi: 10.1002/cne.22776
|
[39] |
F. Gong, N. Zheng and L. Xue, "RICA: A reliable and image configurable arena for cyborg bumblebee based on can bus", Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 2014, pp. 860–863, 2014. http://ieeexplore.ieee.org/document/6943727/
|
[40] |
N.G. Zheng, M.J. Jin and H. Hong, "Real-time and precise insect flight control", Electronics Letters, Vol. 53, No. 6, pp. 387–389, 2017. doi: 10.1049/el.2016.3048
|
[41] |
N.G. Zheng, Q. Ma, M.J. Jin, et al., "Abdominal-waving control of tethered bumblebees based on sarsa with transformed reward", IEEE Transactions on Cybernetics, Vol. 49, No. 8, pp. 3064–3073, 2019. doi: 10.1109/TCYB.2018.2838595
|
[42] |
S.M. Bohte, J.A. La Poutre and J.N. Kok, "Error-backpropagation in temporally encoded networks of spiking neurons", Neurocomputing, Vol. 48, No. 1-4, pp. 17–37, 2002. doi: 10.1016/S0925-2312(01)00658-0
|
[43] |
A. M. Andrew, "Spiking neuron models: Single neurons, populations, plasticity", Kybernetes, Vol. 4, No. 7/8, pp. 277–280, 2013. doi: 10.1108/k.2003.06732gae.003
|
[44] |
R.P. Broussard, "Physiologically-based vision modeling applications and gradient descent-based parameter adaptation of pulse coupled neural networks", Theses, Air Force Institute of Technology, ENC Wright Patterson AFB, OH, United States, 102 pages, 1997.
|
[45] |
Y. Xu, X.Q. Zeng, L. X Han, et al., "A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks", Neural Networks, Vol. 43, pp. 99–113, 2013. doi: 10.1016/j.neunet.2013.02.003
|
[46] |
S. Ghosh-Dastidar and H. Adeli, "Improved spiking neural networks for EEG classification and epilepsy and seizure detection", Integrated Computer Aided Engineering, Vol. 14, No. 3, pp. 187–212, 2007. doi: 10.3233/ICA-2007-14301
|
[47] |
H.Z. Liu, L.T. Yang, M. Lin, et al., "A tensor-based holistic optimization framework for edge computing of internet-of-things', IEEE Network, Vol. 32, No. 1, pp. 88–95, 2018. doi: 10.1109/MNET.2018.1700193
|
[48] |
C. Chen, X.M. Li, A.N. Belkacem, et al., "The mixed kernel function SVM-based point cloud classification", International Journal of Precision Engineering and Manufacturing, Vol. 20, pp. 737–747, 2019. doi: 10.1007/s12541-019-00102-3
|
[49] |
X.Y. Lan, S.P. Zhang, P.C. Yuen, et al., "Learning common and feature-specific patterns: A novel multiple-sparse-representation-based tracker", IEEE Transactions on Image Processing, Vol. 27, No. 4, pp. 2022–2037, 2018. doi: 10.1109/TIP.2017.2777183
|
[50] |
H. Hong, X.Y. Wang, Z.F. Zhu, et al., "An HSR data model for cyborg insect research experiments", Chinese Journal of Electronics, Vol. 27, No. 4, pp. 18–24, 2018. http://www.ejournal.org.cn/Jweb_cje/EN/abstract/abstract10883.shtml
|