Citation: | ZHANG Yuanyuan, WANG Ziqi, WANG Shudong, et al., “SSIG: Single-Sample Information Gain Model for Integrating Multi-Omics Data to Identify Cancer Subtypes,” Chinese Journal of Electronics, vol. 30, no. 2, pp. 303-312, 2021, doi: 10.1049/cje.2021.01.011 |
[1] |
Prasad V, Fojo T and Brada M, "Precision oncology: Origins, optimism, and potential", The Lancet Oncology, Vol. 17, No. 2, pp. 81-86, 2016. doi: 10.1016/S1470-2045(15)00620-8
|
[2] |
Akbani R, Ng KS, Werner HM, et al., "A pan-cancer proteomic analysis of the cancer genome atlas (TCGA) project", Cancer research, Vol. 74, No. 19, pp. 4262-4262, 2014. http://cancerres.aacrjournals.org/content/74/19_Supplement/4262
|
[3] |
Zhao J, Xie XJ, Xu X, et al., "Multi-view learning overview: Recent progress and new challenges", Inform Fusion, Vol. 38, No. 2, pp. 43-54, 2017. http://www.sciencedirect.com/science/article/pii/S1566253516302032
|
[4] |
Rappoport N and Shamir R, "NEMO: Cancer subtyping by integration of partial multi-omic data", Bioinformatics, Vol. 35, No. 18, pp. 3348-3356, 2019. doi: 10.1093/bioinformatics/btz058
|
[5] |
Suzan A, Sorin D and Nguyen. T, "Integrated cancer subtyping using heterogeneous genome-scale molecular datasets", Pac Symp Biocomput, Vol. 38, No. 25, pp. 551-562, 2020. http://www.researchgate.net/publication/338301137_Integrated_Cancer_Subtyping_using_Heterogeneous_Genome-Scale_Molecular_Datasets
|
[6] |
Rappoport N and Shamir R, "Multi-omic and multi-view clustering algorithms: Review and cancer benchmark", Nucleic Acids Research, Vol. 47, No. 2, pp: 1044-1044, 2019. doi: 10.1093/nar/gky1226
|
[7] |
Wang B, Mezlini AM, Demir F, et al., "Similarity network fusion for aggregating data types on a genomic scale", Nature methods, Vol. 11, No. 3, pp: 333-337, 2014. doi: 10.1038/nmeth.2810
|
[8] |
Ma T and Zhang A, "Affinity network fusion and semi-supervised learning for cancer patient clustering", Methods, Vol. 145, No. 8, pp. 16-24, 2018. http://europepmc.org/abstract/MED/29807109
|
[9] |
Guo Y, Zheng J, Shang X, et al., "A similarity regression fusion model for integrating multi-omics data to identify cancer subtypes", Genes, Vol. 9, No. 7, pp. 314-322, 2018. doi: 10.3390/genes9070314
|
[10] |
Jiang L, Xiao Y, Ding Y, et al., "Discovering cancer subtypes via an accurate fusion strategy on multiple profile data", Frontiers in Genetics, Vol. 20, No. 5, pp. 10-20, 2019. http://www.ncbi.nlm.nih.gov/pubmed/30804977
|
[11] |
Nguyen T, Tagett R, Diaz D, et al., "A novel approach for data integration and disease subtyping", Genome Research, Vol. 27, No. 12, pp. 2025-2039, 2017. doi: 10.1101/gr.215129.116
|
[12] |
Liu XP, Wang YT, Ji HB, et al., "Personalized characterization of diseases using sample-Specific networks", Nucleic Acids Research, Vol. 44, No. 22, pp. 164-164, 2016. doi: 10.1093/nar/gkw772
|
[13] |
Rappoport N and Shamir R, "Multi-omic and multi-view clustering algorithms: Review and cancer benchmark", Nucleic Acids Research, Vol. 47, No. 2, pp. 1044-1044, 2019. doi: 10.1093/nar/gky1226
|
[14] |
Duan R, Gao L, Xu H, et al., "CEPICS: A comparison and evaluation platform for integration methods in cancer subtyping", Frontiers in Genetics, Vol. 19, No. 10, pp. 966-978, 2019. http://www.ncbi.nlm.nih.gov/pubmed/31649733
|
[15] |
Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al., "The cancer genome atlas pan-cancer analysis project", Nature Genetics, Vol. 45, No. 10, pp. 1113-1120, 2013. doi: 10.1038/ng.2764
|
[16] |
Hidalgo SJT and Ma SG, "Clustering multilayer omics data using muncut", BMC Genomics, Vol. 19, No. 1, pp. 198-198, 2018. doi: 10.1186/s12864-018-4580-6
|
[17] |
Peter J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis", Journal of Computational and Applied Mathematics, Vol. 20, No. 1, pp. 53-65, 1987. http://www.sciencedirect.com/science/article/pii/0377042787901257
|
[18] |
Estevez PA, Tesmer M, Perez CA, et al., "Normalized mutual information feature selection", IEEE Transactions on Neural Networks, Vol. 20, No. 2, pp. 189-201, 2009. doi: 10.1109/TNN.2008.2005601
|
[19] |
Steinley D, "Properties of the Hubert-Arabie adjusted Rand index", Psychological Methods, Vol. 9, No. 3, pp. 386-396, 2004. doi: 10.1037/1082-989X.9.3.386
|
[20] |
Richardson M, Garner P and Donegan S, "Cluster randomised trials in cochrane reviews: Evaluation of methodological and reporting practice", PloS one, Vol. 11, No. 3, pp. 53-65, 2016. http://europepmc.org/articles/PMC4794236/
|
[21] |
Zhang SL, Wang X, Li ZM, et al., "Score for the overall survival probability of patients with first-diagnosed distantly metastatic cervical cancer: A novel nomogram-based risk assessment system", Frontiers in Oncology, Vol. 5, No. 9, pp. 1106-1106, 2019. http://www.ncbi.nlm.nih.gov/pubmed/31750238
|
[22] |
Henshall SM, Afar DE, Hiller J, et al., "Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse", Cancer Research, Vol. 63, No. 14, pp. 4196-4203, 2003. http://carcin.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=63/14/4196
|
[23] |
Shi Q, Zhang C, Peng M, et al., "Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data", Bioinformatics, Vol. 33, No. 17, pp. 2706-2714, 2017. doi: 10.1093/bioinformatics/btx176
|