Citation: | LIU Chuanlu, WANG Yicheng, CHI Hehua, et al., “Utility Preserved Facial Image De-identification Using Appearance Subspace Decomposition,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 413-418, 2021, doi: 10.1049/cje.2021.03.004 |
J. Moran,“Citizenship and identity in the age of surveillance”, Journal of Postcolonial Writing, Vol.51, No.6, pp.749–750, 2015.
|
R. Agrawal and S. Ramakrishnan,“Privacy-preserving data mining”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of data, 2000.
|
C. Neustaedter, S. Greenberg and M. Boyle, “Blur filtration fails to preserve privacy for home-based video conferencing”, ACM Transactions on Computer-Human Interaction, Vol.13, No.1, pp.1–36, 2006.
|
D. Netburn,“Youtube’ s new face-blurring tool designed to protect activists”, Activists, Los Angeles Times, LA, USA, July, 2012.
|
R. Slobodan and N. Pavesic,“An overview of face deidentification in still images and videos”, Automatic Face and Gesture Recognition (FG), Vol.4, pp.1–6, 2015.
|
E. Newton, L. Sweeney and B. Malin,“Preserving privacy by De-identifying facial images”, IEEE Transactions Knowledge and Data Engineering, Vol.19, No.2, pp.232–243, 2005.
|
R. Gross, E. Airoldi, B. Malin, et al., “Integrating utility into face de-identification”, Proceedings of International Workshop on Privacy Enhancing Technologies, Vol.16, No.8, pp.227–242, 2005.
|
R. Gross, L. Sweeney, F. de la Torre, et al., “Model-based face de-identification”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.161–161, 2006.
|
R. Gross and L. Sweeney, “Model-based face deidentification”, Proceedings of IEEE Conference on Biometrics: Theory, Applications, and Systems, pp.1–8, 2007.
|
L. Sweeney, “k-anonymity: A model for protecting privacy”, International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, Vol.10, No.5, pp.557–570, 2002.
|
H.H Chi and H.H Yu, “Face de-identification using facial identity preserving features”, Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, pp.586–590, 2015.
|
A.J Calder, A.M Burton, P. Miller, et al., “Integrating utility into face De-identification”, Vision research, Vol.41, No.9, pp.1179–1208, 2001.
|
T. Cootes, G. Edwards and C. Taylor, “Active appearance models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.6, pp.681–685, 2001.
|
I. Matthews and S. Baker, “Active appearance models revisited”, International Journal of Comput Vision, Vol.60, No.2, pp.135–164, 2004.
|
I. Guyon and A. Elisseeff, “An introduction to variable and feature selection”, Journal of Machine Learning Research, Vol.3,No.3, pp.1157–1182, 2003.
|
P. Lucey, J.F Cohn, T. Kanade, et al., “The extended cohn-kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.94–101, 2010.
|
G. Formam, “An extensive empirical study of feature selection metrics for text classification”, Journal of Machine Learning Research 3, pp.1289–1305, 2003.
|
Y. Yang and J.O Pedersen, “A comparative study on feature selection in text categorization”, Proceedings of the 14th International Conference on Machine Learning, pp.412–420, 1997.
|