Citation: | SONG Tiecheng, FENG Jie, LI Shuang, et al., “Color Context Binary Pattern Using Progressive Bit Correction for Image Classification,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 471-481, 2021, doi: 10.1049/cje.2021.03.010 |
T. Randen and J. Husoy, “Filtering for texture classification: A comparative study”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.4, pp.291–310, 1999.
|
T.C. Song, H.L. Li, F.M. Meng, et al., “LETRIST: Locally encoded transform feature histogram for rotation-invariant texture classification”, IEEE Transactions on Circuits and Systems for Video Technology, Vol.28, No.7, pp.1565–1579, 2018.
|
H.B. Yan, H. Zhou and H.G. Zhang, “Automatic malware classification via PRICoLBP”, Chinese Journal of Electronics, Vol.27, No.4, pp.190–197, 2018.
|
X.S. Wang, Y.R. Li and Y.H. Cheng, “Hyperspectral image classification based on unsupervised heterogeneous domain adaptation CycleGan”, Chinese Journal of Electronics, Vol.29, No.4, pp.608–614, 2020.
|
J.Y. Choi, K.N. Plataniotis and Y.M. Ro, “Using colour local binary pattern features for face recognition”, Proc. of International Conference on Image Processing, Hong Kong, China, pp.4541–4544, 2010.
|
C.Q. Gao, X.D. Li, F.S. Zhen, et al., “Face liveness detection based on the improved CNN with context and texture information”, Chinese Journal of Electronics, Vol.28, No.6, pp.1092–1098, 2019.
|
J. Liu, X. Jing, S. Sun, et al.,“Local gabor dominant direction pattern for face recognition”, Chinese Journal of Electronics, Vol.24, No.2, pp.245–250, 2015.
|
Q. Guo, L. Wang and S.T. Shen, “Multiple-channel local binary fitting model for medical image segmentation”, Chinese Journal of Electronics, Vol.24, No.4, pp.802–806, 2015.
|
P. Long, H.X. Lu and A. Wang, “A novel unsupervised two-stage technique in color image segmentation”, Chinese Journal of Electronics, Vol.27,No.2, pp.405–412, 2018.
|
L. Liu, J. Chen, P.W. Fieguth, et al., “From bow to CNN: Two decades of texture representation for texture classification”, International Journal of Computer Vision, Vol.127, No.1, pp.74–109, 2019.
|
A. Humeau-Heurtier, “Texture feature extraction methods: A survey”, IEEE Access, Vol.7, pp.8975–9000, 2019.
|
T. Ojala, M. Pietikäinen and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp.971–987, 2002.
|
Z. Guo, L. Zhang and D. Zhang, “A completed modeling of local binary pattern operator for texture classification”, IEEE Transactions on Image Processing, Vol.19, No.6, pp.1657–1663, 2010.
|
S. Liao, M.W.K. Law and A.C.S. Chung, “Dominant local binary patterns for texture classification”, IEEE Transactions on Image Processing, Vol.18, No.5, pp.1107–1118, 2009.
|
B. Jun, I. Choi and D. Kim, “Local transform features and hybridization for accurate face and human detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.6, pp.1423–1436, 2013.
|
T.C. Song, L.L. Xin, C.Q. Gao, et al., “Grayscale-inversion and rotation invariant texture description using sorted local gradient pattern”, IEEE Signal Processing Letters, Vol.25, No.5, pp.625–629, 2018.
|
X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions”, IEEE Transactions on Image Processing, Vol.19, No.6, pp.1635–1650, 2010.
|
J. Ren, X. Jiang and J. Yuan, “Noise-resistant local binary pattern with an embedded error-correction mechanism”, IEEE Transactions on Image Processing, Vol.22, No.10, pp.4049–4060, 2013.
|
T.C. Song, H.L. Li, F.C. Meng, et al., “Noise-robust texture description using local contrast patterns via global measures”, IEEE Signal Processing Letters, Vol.21, No.1, pp.93–96, 2014.
|
L. Liu, Y. Long, P.W. Fieguth, et al., “BRINT: Binary rotation invariant and noise tolerant texture classification”, IEEE Transactions on Image Processing, Vol.23, No.7, pp.3071–3084, 2014.
|
M. Alkhatib and A. Hafiane, “Robust adaptive median binary pattern for noisy texture classification and retrieval”, IEEE Transactions on Image Processing, Vol.28, No.11, pp.5407–5418, 2019.
|
L. Liu, P. Fieguth, M. Pietikäinen, et al., “Median robust extended local binary pattern for texture classification”, IEEE Transactions on Image Processing, Vol.25, No.3, pp.1368–1381, 2016.
|
T.C. Song, J. Feng, L. Luo, et al., “Robust texture description using local grouped order pattern and non-local binary pattern”, IEEE Transactions on Circuits and Systems for Video Technology, Vol.31, No.1, pp.189–202, 2021.
|
F.M. Khellah, “Texture classification using dominant neighborhood structure”, IEEE Transactions on Image Processing, Vol.20, No.11, pp.3270–3279, 2011.
|
F. Sandid and A. Douik, “Robust color texture descriptor for material recognition”, Pattern Recognition Letters, Vol.80, pp.15–23, 2016.
|
E. Cernadas, M. Fernndez-Delgado, E. Gonzlez-Rufino, et al., “Influence of normalization and color space to color texture classification”, Pattern Recogniton, Vol.61, pp.120–138, 2017.
|
C. Zhu, C.E. Bichot and L. Chen, “Multi-scale color local binary patterns for visual object classes recognition”, Proc. of International Conference on Pattern Recognition, Istanbul, Turkey, pp.3065–3068, 2010.
|
M. Sotoodeh, M.R. Moosavi and R. Boostani, “A novel adaptive LBP-based descriptor for color image retrieval”, Expert Systems with Applications, Vol.127, pp.342–352, 2019.
|
S.R. Dubey, S.K. Singh and R.K. Singh, “Multichannel decoded local binary patterns for content-based image retrieval”, IEEE Transactions on Image Processing, Vol.25, No.9, pp.4018–4032, 2016.
|
S.H. Lee, J.Y. Choi, Y.M. Ro, et al., “Local color vector binary patterns from multichannel face images for face recognition”, IEEE Transactions on Image Processing, Vol.21, No.4, pp.2347–2353, 2012.
|
R.S. Lan, Y.C. Zhou and Y.Y. Tang, “Quaternionic local ranking binary pattern: A local descriptor of color images”, IEEE Transactions on Image Processing, Vol.25, No.2, pp.566–579, 2016.
|
C. Singh, E. Walia and K.P. Kaur, “Color texture description with novel local binary patterns for effective image retrieval”, Pattern Recognition, Vol.76, pp.50–68, 2018.
|
T.C. Song, J. Feng, S.Y. Wang, et al., “Spatially weighted order binary pattern for color texture classification”, Expert Systems with Applications, Vol.147, doi:10.1016/j.eswa.2019.113167, 2020.
|
T. Ojala, T. Mäenpää, M. Pietikäinen, et al., “Outex-new framework for empirical evaluation of texture analysis algorithms”, Proc. of International Conference on Pattern Recognition, Quebec, Canada, pp.701–706, 2002.
|
E. Hayman, B. Caputo, M. Fritz, et al., “On the significance of real world conditions for material classification”, Proc. of European Conference on Computer Vision, Prague, Czech Republic, pp.253–266, 2004.
|
M. Cimpoi, S. Maji, I. Kokkinos, et al., “Deep filter banks for texture recognition, description, and segmentation”, International Journal of Computer Vision, Vol.118, No.1, pp.65–94, 2016.
|
R.M. Anwer, F.S. Khan, J. van de Weijer, et al., “Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol.138, pp.74–85, 2018.
|
K.J. Dana, S.K. Nayar, B. van Ginneken, et al., “Reflectance and texture of real-world surfaces”, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp.151–157, 1997.
|
L. Liu, P.W. Fieguth, Y.L. Guo, et al., “Local binary features for texture classification: Taxonomy and experimental study”, Pattern Recognition, Vol.62, pp.135–160, 2017.
|
M.A. Brown and S. Susstrunk, “Multi-spectral SIFT for scene category recognition”, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, pp.177–184, 2011.
|
Y. Xiao, J. Wu and J. Yuan, “mCENTRIST: A multi-channel feature generation mechanism for scene categorization”, IEEE Transactions on Image Processing, Vol.23, No.2, pp.823–836, 2014.
|
R. Zhao, W.L. Ouyang and X.G. Wang, “Unsupervised salience learning for person re-identification”, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, pp.3586–3593, 2013.
|
L. Yu, L.C. Zhang, J.V.D. Weijer, et al., “Beyond eleven color names for image understanding”, Machine Vision and Applications, Vol.29, No.2, pp.361–373, 2018.
|