Citation: | HUANG Jinwang, LYU Shanxiang, CHEN Yue, “Chaotic Signal Denoising Algorithm Based on Self-Similarity,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 482-488, 2021, doi: 10.1049/cje.2021.04.001 |
J. Cai, Y. Li, W. Li, et al., “Two entropy-based criteria design for signal complexity measures”, Chinese Journal of Electronics, Vol.28, No.6, pp.1139–1143, 2019.
|
L. Zhang, Y. Ji and M. Luo, “Parameter estimation of weak signal based on the steady attractor of duffing oscillator”, Chinese Journal of Electronics, Vol.28, No.4, pp.781–788, 2019.
|
X. Liu, S. Qiu and F. Lau, “Deterministic approaches for noncoherent communications with chaotic carriers”, Journal of Systems Engineering and Electronics, Vol.16, No.2, pp.253–257, 2005.
|
K. Pukenas, “Algorithm for noise reduction for strongly contaminated chaotic oscillators based on the local projection approach and 2D wavelet filtering”, Journal of Vibroengineering, Vol.18, No.4, pp.2537–2544, 2016.
|
W. Wang, Y. Jin, B. Wang, et al., “Chaotic signal de-noising based on adaptive threshold synchrosqueezed wavelet transform”, Acta Electronica Sinica, Vol.46, No.7, pp.1652–1657, 2018.
|
W. Dong, H. Ding, X. Dong, et al., “An adaptive wavelet threshold de-nosing both in low and high frequency domains”, Chinese Journal of Electronics, Vol.43, No.12, pp.2374–2380, 2015.
|
K. Yannis and M. Stephen, “Development of EMD-based denoising methods inspired by wavelet thresholding”, IEEE Transactions on Signal Processing, Vol.57, No.4, pp.1351–1362, 2009.
|
G. Li and S. Lyu, “Chaotic signal denoising in a compressed sensing perspective”, Acta Physica Sinica, Vol.64, No.16, pp.160502, 2015.
|
J. Gao, H. Sultan, J. Hu, et al., “Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison”, IEEE Signal Processing Letters, Vol.17, No.3, pp.237–240, 2010.
|
M. Wang, Z. Wu and J. Feng, “A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals”, Acta Physica Sinica, Vol.64, No.4, pp.40503, 2015.
|
V. Fedorov and C. Ballester, “Affine non-local means image denoising”, IEEE Transactions on Image Processing, Vol.26, No.5, pp.2137–2148, 2017.
|
D. Kostadin, F. Alessandro, K. Vladimir and E. Karen, “Image denoising by sparse 3-D transform-domain collaborative filtering”, IEEE Transactions on Image Processing, vol.16, No.8, pp.2080–2095, 2007.
|
G. Chen, G. Luo, L. Tian, et al., “Noise reduction for images with non-uniform noise using adaptive block matching 3D filtering”, Chinese Journal of Electronics, Vol.26, No.6, pp.1227–1232, 2017.
|
Q. Guo, C. Zhang, Y. Zhang, et al., “An efficient SVD-based method for image denoising”, IEEE Transactions on Circuits and Systems for Video Technology, Vol.26, No.5, pp.868–880, 2016.
|
S. M. Yu, Chaotic Systems and Chaotic Circuits:Principle, Design and Its Application in Communications, Xidian University Press, Xi’an, China, pp.10–12, 2011.
|
H. Tao and Z. Zhou, “Prediction of chaotic time series based on fractal self-affinity”, Acta Physica Sinica, Vol.56, No.2, pp.693–700, 2007.
|
G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, USA, 2013.
|
B. D. Moor, “The singular value decomposition and long and short spaces of noisy matrices”, IEEE Transactions on Signal Processing, Vol.41, No.9, pp.2826–2838, 1993.
|
Y. Hou, C. Zhao, D. Yang, et al., “Comments on image denoising by sparse 3D transform domain collaborative filtering”, IEEE Transactions on Image Processing, Vol.20, No.1, pp.268–270, 2011.
|
L. D. David and M. J. Iain, “Ideal spatial adaptation by wavelet shrinkage”, Biometrika, Vol.81, No.3, pp.425–455, 1994.
|
D. James and W. Kahan, “Accurate singular values of bidiagonal matrices”, SIAM Journal on Scientific and Statistical Computing, Vol.11, No.5, pp.873–912, 1990.
|
A. Rajwade, A. Rangarajan and A. Banerjee, “Image denoising using the higher order singular value decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.3, pp.849–862, 2013.
|
S. Lü, Z. Wang, Z. Hu, et al., “Gradient method for blind chaotic signal separation based on proliferation exponent”, 2014 Chinese Physics B, Vol.23, No.1, pp.142–147, 2013.
|
K. Holger and S. Thomas,Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, UK, pp.65–74, 2004.
|