Citation: | SUN Xiaohui, WEN Chenglin, WEN Tao. High-Order Extended Kalman Filter Design for a Class of Complex Dynamic Systems with Polynomial Nonlinearities[J]. Chinese Journal of Electronics, 2021, 30(3): 508-515. DOI: 10.1049/cje.2021.04.004 |
Z.H. Li, L. Ning and S.N. Xu, “Nonlinear non-Gaussian system filtering based on Gaussian sum and divided difference filter”, Control and Decision, Vol.27, No.1, pp.129–134, 2012. (in Chinese)
|
Q.B. Ge, T.L. Xu, X.L. Feng, et al., “Universal delayed kalman filter with measurement weighted summation for the linear time invariant system”, Chinese Journal of Electronics, Vol.20, No.1, pp.67–72, 2011.
|
C.B. Wen, Z.D. Wang, Q.Y. Liu, et al., “Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects”, IEEE Transactions on Systems, Man and Cybernetics: Systems, Vol.48, No.6, pp.930–941, 2018.
|
T. Wen, C. Constantinou, L. Chen, et al., “A practical access point deployment optimization strategy in communication-based train control systems”, IEEE Transactions on Intelligent Transportation Systems, Vol.20, No.8, pp.3156–3167, 2019.
|
C.L. Wen, Q.B. Ge, X.S. Cheng, et al., “Filters design based on multiple characteristic functions for the grinding process cylindrical workpieces”, IEEE Transactions on Industrial Electronics, Vol.64, No.6, pp.4671–4679, 2017
|
C.L. Wen, X.S. Cheng, D.X Xu, et al., “Filter design based on characteristic functions for one class of multidimensional nonlinear non-Gaussian systems”, Automatica, Vol.82, pp.171–180, 2017.
|
R.E. Kalman, “A new approach to linear filter and prediction problem”, IEEE Transactions of the ASME Journal of Basic Engineering, Vol.82, pp.35–45, 1960.
|
Y. Sunahara and K. Yamashita, “An approximate method of state estimation for nonlinear dynamical systems with state-dependent noise”, International Journal of Control, Vol.11, No.4, pp.957–972, 1970.
|
R.J. Meinhold and N.D. Singpurwalla, “Robustification of Kalman filter models”, Journal of the American Statistical Association, Vol.84, No.406, pp.479–486, 1989.
|
S.J. Julier and J.K. Uhlmann, “Unscented filtering and nonlinear estimation”, Proceedings of the IEEE, Vol.92, No.3, pp.401–422, 2004.
|
L. Wang, X.H. Cheng and S.X. Li, “Gaussian sum high order unscented kalman filtering algorithm”, Acta Electronica Sinica, Vol.45, No.2, pp.424–430, 2017. (in Chinese)
|
I. Arasaratnam and S. Haykin, “Cubature Kalman filters”, IEEE Transactions on Automatic Control, Vol.54, No.6, pp.1254–1269, 2009.
|
I. Arasaratnam and S. Haykin, “Square-root quadrature Kalman filtering”, IEEE Transactions on Signal Processing, Vol.56, No.6, pp.2589–2593, 2008.
|
K. Kowalski and W.H. Steeb, Nonlinear Dynamical Systems and Carleman Linearization, World Scientific, Singapore, 1991.
|
A.Germani, C.Manes and P.Palumbo, “Polynomial extended Kalman filter”, IEEE Transactions on Automatic Control, Vol.50, No.12, pp.2059–2064, 2005.
|
Y. Liu, Z.D. Wang, X. He, et al., “Filtering and fault detection for nonlinear systems with polynomial approximation”, Automatica, Vol.54, pp.348–359, 2015.
|
A. Germani, C. Manes and P.Palumbo, “Polynomial extended Kalman filtering for discrete-time nonlinear stochastic systems”, In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, pp.886–891, 2003.
|
A. Germani, C. Manes and P.Palumbo, “Filtering of stochastic nonlinear differential systems via a Carleman approximation approach”, IEEE Transactions on Automatic Control, Vol.52, No.11, pp.2166–2172, 2007.
|
A. Germani, C. Manes and P.Palumbo, “State estimation of stochastic systems with switching measurements: A polynomial approach”, International Journal of Robust and Nonlinear Control, Vol.19, No.14, pp.1632–1655, 2009.
|
G.Mavelli and P. Palumbo, “The Carleman approximation approach to solve a stochastic nonlinear control problem”, IEEE Transactions on Automatic Control, Vol.55, No.4, pp.976–982, 2010.
|
C.Zhang and H.S. Yan, “Identification of nonlinear time-varying system with noise based on multi-dimensional Taylor network with optimal structure”, Journal of Southeast University, Vol.47, No.6, pp.1086–1093, 2017. (in Chinese)
|
[1] | GE Hui, SUN Yujuan, XIE Chunlei. The GAC Property of a Class of 1-Resilient Functions with High Nonlinearity[J]. Chinese Journal of Electronics, 2020, 29(2): 220-227. DOI: 10.1049/cje.2019.12.008 |
[2] | DING Jian, LI Hongju, LIANG Jing, TANG Yongsheng. Quantum Codes from Constacyclic Codes over Polynomial Residue Rings[J]. Chinese Journal of Electronics, 2019, 28(6): 1131-1138. DOI: 10.1049/cje.2019.07.007 |
[3] | LIU Jinhui, ZHANG Huanguo, JIA Jianwei. Cryptanalysis of Schemes Based on Polynomial Symmetrical Decomposition[J]. Chinese Journal of Electronics, 2017, 26(6): 1139-1146. DOI: 10.1049/cje.2017.05.005 |
[4] | ZHAO Chun'e, MA Wenping, YAN Tongjiang, SUN Yuhua. Linear Complexity of Least Significant Bit of Polynomial Quotients[J]. Chinese Journal of Electronics, 2017, 26(3): 573-578. DOI: 10.1049/cje.2016.10.008 |
[5] | HUANG Min, LI Bingbing, SUN Ruqin. An Effective Approach to Estimate the Second-Order Polynomial Models in Time-Varying Channels[J]. Chinese Journal of Electronics, 2017, 26(1): 199-204. DOI: 10.1049/cje.2016.10.013 |
[6] | LIU Jian, CHEN Lusheng. On Nonlinearity of S-Boxes and Their Related Binary Codes[J]. Chinese Journal of Electronics, 2016, 25(1): 167-173. DOI: 10.1049/cje.2016.01.025 |
[7] | WANG Ke, FAN Chaojie, PAN Wenjie, ZHOU Jianjun. Nonlinearity Calibration for Pipelined ADCs by Splitting Capacitors with Self-Tracking Comparator Thresholds[J]. Chinese Journal of Electronics, 2015, 24(3): 474-479. DOI: 10.1049/cje.2015.07.006 |
[8] | LI Xiao, LIU Chunming, LI Fu. TD-SCDMA: Spectrum Modeling, Experimental Verification of Power Amplifier Nonlinearity[J]. Chinese Journal of Electronics, 2013, 22(3): 631-633. |
[9] | ZHANG Yin, LIN Dongdai, LIU Meicheng. Improving the Lower Bound on Linear Complexity of the Sequences Generated by Nonlinear Filtering[J]. Chinese Journal of Electronics, 2012, 21(3): 519-522. |
[10] | LIU Jun, YU Jinshou. A New Method to Fault Diagnosis for a Class of Nonlinear Systems[J]. Chinese Journal of Electronics, 2011, 20(2): 217-222. |
1. | Zhou, Y., Wen, C., Yu, W. et al. Adaptive Prediction of Remaining Useful Life for Lithium Batteries Based on Cubic Polynomial Combined with High-Order Extended Kalman Filter. Lecture Notes in Electrical Engineering, 2025. DOI:10.1007/978-981-96-1694-7_23 |
2. | Wen, T., Wang, J., Cai, B. et al. A Dynamic Estimation Method for the Headway of Virtual Coupling Trains Utilizing the High-Order Extended Kalman Filter-Based Smoother. IEEE Transactions on Intelligent Transportation Systems, 2025. DOI:10.1109/TITS.2024.3524731 |
3. | Ding, L., Wen, C. High-Order Extended Kalman Filter for State Estimation of Nonlinear Systems. Symmetry, 2024, 16(5): 617. DOI:10.3390/sym16050617 |
4. | Sun, X., He, X., Wu, X. et al. Internal and External Double-Cycle High-Order Kalman Filter Design. IEEE Sensors Journal, 2024, 24(3): 3380-3393. DOI:10.1109/JSEN.2023.3342051 |
5. | Sun, X., Jiang, H., Wen, C. Multimodel Train Speed Estimation Based on High-Order Kalman Filter. IEEE Sensors Journal, 2024, 24(22): 37183-37195. DOI:10.1109/JSEN.2024.3444037 |
6. | Wang, J., Gao, Y., Cao, Y. et al. The Investigation of Data Voting Algorithm for Train Air-Braking System Based on Multi-Classification SVM and ANFIS. Chinese Journal of Electronics, 2024, 33(1): 274-281. DOI:10.23919/cje.2021.00.428 |
7. | Cui, Y., Sun, X. Multi-Sensor Fusion Adaptive Estimation for Nonlinear Under-Observed System with Multiplicative Noise. Chinese Journal of Electronics, 2024, 33(1): 282-292. DOI:10.23919/cje.2022.00.364 |
8. | Ghojoghnezhad, S., Ghanbari, M., Ebrahimi, R. et al. A novel control method for improving reliability of 3-phase induction motor drives under the stator winding open-circuit fault. IET Electric Power Applications, 2023, 17(10): 1347-1366. DOI:10.1049/elp2.12346 |
9. | Peng, D., Wen, C., Lv, M. Design of a High-Order Kalman Filter for State and Measurement of A Class of Nonlinear Systems Based on Kronecker Product Augmented Dimension. Sensors, 2023, 23(6): 2894. DOI:10.3390/s23062894 |
10. | Cheng, Z., Chen, X., Li, H. et al. Minimum Error Entropy High-Order Extended Kalman Filter. 2023. DOI:10.1109/ICCSI58851.2023.10303856 |
11. | Lyu, S., Dai, X., Zhong, M.A. et al. Research on Global Clock Synchronization Mechanism in Software-Defined Control Architecture. Chinese Journal of Electronics, 2022, 31(5): 915-929. DOI:10.1049/cje.2021.00.059 |
12. | Wang, M., Liu, W., Wen, C. A High-Order Kalman Filter Method for Fusion Estimation of Motion Trajectories of Multi-Robot Formation. Sensors, 2022, 22(15): 5590. DOI:10.3390/s22155590 |
13. | Wen, C., Lin, Z. A Gradually Linearizing Kalman Filter Bank Designing for Product-Type Strong Nonlinear Systems. Electronics (Switzerland), 2022, 11(5): 714. DOI:10.3390/electronics11050714 |
14. | Chen, W.S., Zhou, Z.G., Tuo, L.F. et al. The vehicle collision warning on urban road based on internet of vehicles data. Advances in Transportation Studies, 2022, 4(Special issue): 3-12. DOI:10.53136/97912218027641 |
15. | Liu, X., Wen, C., Sun, X. Design Method of High-Order Kalman Filter for Strong Nonlinear System Based on Kronecker Product Transform. Sensors, 2022, 22(2): 653. DOI:10.3390/s22020653 |
16. | Shi, Z., Shi, W., Wang, J. The detection of thread roll’s margin based on computer vision. Sensors, 2021, 21(19): 6331. DOI:10.3390/s21196331 |
17. | Wang, Q., Sun, X., Wen, C. Design method for a higher order extended kalman filter based on maximum correlation entropy and a Taylor network system. Sensors, 2021, 21(17): 5864. DOI:10.3390/s21175864 |