Citation: | WANG Hongyu, ZHENG Qunxiong, WANG Zhongxiao, et al., “Binary Sequences Derived from Dickson Permutation Polynomials over Binary Extension Field,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 523-533, 2021, doi: 10.1049/cje.2021.04.006 |
R. Lidl and H. Niederreiter, Finite Fields, in: Encyclopedia of Mathematics and its Applications, Vol.20, Cambridge University Press, Cambridge, 1997.
|
G.L. Mullen and D. Panario, Handbook of Finite Fields, Taylor & Francis, Boca Raton, 2013.
|
X.D. Hou, “Permutation polynomials over finite fields – A survey of recent advances”, Finite Fields Their Appl., Vol.32, pp.82–119, 2015.
|
Z.R. Tu and X.Y. Zeng, “A class of permutation trinomials over finite fields of odd characteristic”, Cryptogr. Commun., Vol.11, No.4, pp.563–583, 2019.
|
Z.R. Tu, X.Y. Zeng and Y.P. Jiang, “Two classes of permutation polynomials having the form (x2m +x+δ)s +x”, Finite Fields Their Appl., Vol.53, pp.99–112, 2018.
|
L.B. Wang and B.F. Wu, “General constructions of permutation polynomials of the form (x2m +x+δ)i(2m-1)+1+ x over F22m”, Finite Fields Their Appl., Vol.52, pp.137–155, 2018.
|
X.T. Feng, D.D. Lin, L.P. Wang, et al., “Further results on complete permutation monomials over finite fields”, Finite Fields Their Appl., Vol.57, pp.47–59, 2019.
|
X.F. Xu, X.T. Feng and X.Y. Zeng, “Complete permutation polynomials with the form (xpm - x +δ)s + axpm + bx over Fpn”, Finite Fields Their Appl., Vol.57, pp.309–343, 2019.
|
B.F. Wu and D.D. Lin, “On constructing complete permutation polynomials over finite fields of even characteristic”, Discret. Appl. Math., Vol.184, pp.213–222, 2015.
|
R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, in: Pitmen Monographs and Surveys in Pure and Applied Mathematics, Vol.65, Longmen Scientific and Technical, Essex, England, 1993.
|
S. Ahmad, “Cycle structure of automorphisms of finite cyclic groups”, Journal of Combinatorial Theory, Series A, Vol.6, No.4, pp.370–374, 1969.
|
Q.X. Zheng, Y.P. Jiang, D.D. Lin, et al., “Binary sequences derived form monomial permutation polynomials over GF(2p)”, private communication.
|
I. Rubio and C. Corrada, “Cyclic decomposition of permutations of finite fields obtained using monomials”, in: 7th Int. Conf. on Finite Fields and Their Applications, Springer-Verlag, pp.254–261, 2003.
|
R. Lidl and G.L. Mullen, “Cycle structure of Dickson permutation polynomials”, Mathematical Journal of Okayama University, Vol.33, No.1, pp.1–11, 1991.
|
W.S. Chou, “The period lengths of inversive congruential recursions”, Acta Arithmetica, Vol.73, No.4, pp.325–341, 1995.
|
A. Çeşmelioğlu, W. Meidl and A. Topuzoğlu, “On the cycle structure of permutation polynomials”, Finite Fields Their Appl., Vol.14, No.3, pp.593–614, 2008.
|
A. Sakzad, M.R. Sadeghi and D. Panario, “Cycle structure of permutation functions over finite fields and their applications”, Adv. Math. Commun., Vol.6, No.3, pp.347–361, 2012.
|
H. Niederreiter, “Pseudorandom vector generation by the inversive method”, ACM Trans. Model. Comput. Simul., Vol.4, No.2, pp.191–212, 1994.
|
S.L. Anderson, “Random number generators on vector supercomputers and other advanced architectures”, SIAM Rev., Vol.32, pp.221–251, 1990.
|
V.C. Bhavsar and J.R. Isaac, “Design and analysis of parallel Monte Carlo algorithms”, SIAM J. Sci. Stat. Comput., Vol.8, pp.s73–s95, 1987.
|
W.F. Eddy, “Random number generators for parallel processors”, J. Comput. Appl. Math., Vol.31, pp.63–71, 1986.
|