Citation: | MENG Fanyi, LIU Cha, HU Jianquan, et al., “Design and Analysis of a 0.01-to-6GHz 31dBm-P1dB 31.5%-PAE Distributed Power Amplifier in 0.25-μm GaAs Technology,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 549-555, 2021, doi: 10.1049/cje.2021.04.008 |
X. Gu, N. N. Srinaga, L. Guo, et al., “Diplexer-based fully passive harmonic transponder for sub-6-GHz 5G-compatible IoT applications”, IEEE Trans. Microwave Theory Techn., Vol.67, No.5, pp.1675–1687, 2019.
|
A. Chehri and H. T. Mouftah, “New MMSE downlink channel estimation for sub-6 GHz non-line-of-sight backhaul”, 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp.1–7, 2018.
|
M. Shi, K. Yang, Z. Han, et al., “Coverage analysis of integrated sub-6GHz-mmWave cellular networks with hotspots”, IEEE Trans. Commun., Vol.67, No.11, pp.8151–8164, 2019.
|
Y. Liu, C. Li, X. Xia, et al., “Multiband user equipment prototype hardware design for 5G communications in sub-6- GHz band”, IEEE Trans. Microwave Theory Techn., Vol.67, No.7, pp.2916–2927, 2019.
|
M. Hirzallah, M. Krunz and Y. Xiao, “Harmonious cross-technology coexistence with heterogeneous traffic in unlicensed bands: Analysis and approximations”, IEEE Trans. Cogn. Commun. Netw., Vol.5, No.3, pp.690–701, 2019.
|
B. Liu, X. Yi, K. Yang, et al., “A carrier aggregation transmitter front End for 5-GHz WLAN 802. 11ax application in 40-nm CMOS”, IEEE Trans. Microwave Theory Techn., Vol.68, No.1, pp.264–276, 2020.
|
T. Cappello, A. Duh, T. W. Barton, et al., “A dual-band dual-output power amplifier for carrier aggregation”, IEEE Trans. Microwave Theory Techn., Vol.67, No.7, pp.3134–3146, 2019.
|
M. Li, J. Pang, Y. Li, et al., “Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications”, IEEE Trans. Microwave Theory Techn., Vol.67, No.10, pp.4246–4259, 2019.
|
R. T. Toh, et al., “A CMOS-SOI power amplifier technology using EDNMOS for sub 6GHz wireless applications”, IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Philadelphia, PA, pp.32–35, 2018.
|
S. Li, S. S. H. Hsu, J. Zhang, et al., “A sub-6 GHz compact GaN MMIC Doherty PA with a 49.5% 6dB back-off PAE for 5G communications”, IEEE Inter. Microwave Symp., Philadelphia, PA, pp.805–807, 2018.
|
J. Lindstrand, M. Törmänen and H. Sjöland, “A decade frequency range CMOS power amplifier for sub-6-GHz cellular terminals”, IEEE Microw. Compon. Lett., Vol.30, No.1, pp.54–57, 2020.
|
C. -H. Wu, C. -H. Lee, W. -S. Chen, et al., “CMOS wideband amplifiers using multiple inductive-series peaking technique, ” IEEE J. Solid-State Circuits, Vol.40, No.2, pp.548–552, 2005.
|
T. T. Nguyen, K. Fujii and A. Pham, “A 4-20GHz, multi-watt level, fully integrated push-pull distributed power amplifier with wideband even-order harmonic suppression”, IET Microw. Ant. Propag., Vol.13, No.13, pp.2279–2283, 2019.
|
M. Roberg, S. Schafer, O. Marrufo, et al., “A 2-20GHz distributed GaN power amplifier using a novel biasing technique”, IEEE Inter. Microw. Symp., Boston, MA, USA, pp.694–697, 2019.
|
B. Bunz, H. Sledzik, P. Schuh, et al., “4-18GHz AIGaN/GaN based distributed power amplifier MMIC”, IEEE European Microw. Integr. Circuits Conf., Madrid, pp.325–328, 2018.
|
L. Diego, B. Haentjcns, C. Mjema, et al., “A DC to 40GHz, high linearity monolithic GaAs distributed amplifier with low DC power consumption as a high bit-rate pre-driver”, IEEE European Microw. Conf., Madrid, pp.1517–1520, 2018.
|
L. Gao, Q. Ma and G. M. Rebeiz, “A 1-17GHz stacked distributed power amplifier with 19-21dBm saturated output power in 45nm CMOS SOI technology”, IEEE Inter. Microw. Symp., Philadelphia, PA, pp.454–456, 2018.
|
D. Shin, I. Yom and D. Kim, “4-20GHz GaAs true-time delay amplifier MMIC”, IEEE Microw. Compon. Lett., Vol.27, No.12, pp.1119–1121, 2017.
|
J. Moon, J. Kang, D. Brown, et al., “100MHz-8GHz linear distributed GaN MMIC power amplifier with improved power-added efficiency”, IEEE Topical RF/Microw. Power Amplifiers for Radio and Wireless App. Conf., Phoenix, AZ, pp.40–43, 2017.
|
K. Fujii, “A DC to 22GHz, 2W high power distributed amplifier using stacked FET topology with gate periphery tapering”, IEEE Radio Freq. Integr. Circuits Symp., San Francisco, CA, pp.270–273, 2016.
|
H. Wu, Q. Lin, Y. Chen, et al., “A 50MHz to 6GHz 1-Watt GaAs pHEMT stacked distributed power amplifier”, IEEE MTT-S Inter. Wireless Symp., Guangzhou, China, 2019.
|
A. Grebennikov, RF and Microwave Power Amplifier Design, New York: McGraw-Hill, 2004.
|
M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit”, IEEE Trans. Microwave Theory Techn., Vol.MTT-38, pp.891–895, 1990.
|
T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
|
D. M. Pozar, Microwave Engineering, 2nd Ed., Proc. New York: Wiley, Ch.8, 1998.
|
R. -C. Liu, T. -P. Wang, L. -H. Lu, et al., “An 80GHz travelling-wave amplifier in a 90nm CMOS technology”, IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005.
|
X. Ding and L. Zhang, “A high-efficiency GaAs MMIC power amplifier for multi-standard system”, IEEE Microw. Compon. Lett., Vol.26, No.1, pp.55–57, 2016.
|