Volume 30 Issue 3
May  2021
Turn off MathJax
Article Contents
MENG Fanyi, LIU Cha, HU Jianquan, MOU Shouxian, MA Kaixue. Design and Analysis of a 0.01-to-6GHz 31dBm-P1dB 31.5%-PAE Distributed Power Amplifier in 0.25-μm GaAs Technology[J]. Chinese Journal of Electronics, 2021, 30(3): 549-555. doi: 10.1049/cje.2021.04.008
Citation: MENG Fanyi, LIU Cha, HU Jianquan, MOU Shouxian, MA Kaixue. Design and Analysis of a 0.01-to-6GHz 31dBm-P1dB 31.5%-PAE Distributed Power Amplifier in 0.25-μm GaAs Technology[J]. Chinese Journal of Electronics, 2021, 30(3): 549-555. doi: 10.1049/cje.2021.04.008

Design and Analysis of a 0.01-to-6GHz 31dBm-P1dB 31.5%-PAE Distributed Power Amplifier in 0.25-μm GaAs Technology

doi: 10.1049/cje.2021.04.008

This work is supported by the National Key Research and Development Program Project of China (No.2019YFB1803200), the National Natural Science Foundation of China (No.61701080), and the Tianjin Municipal Science and Technology Bureau (No.20JCQNJC01040).

  • Received Date: 2020-06-27
  • This paper presents the design and analysis of a distributed power amplifier with 6-dB bandwidth from 10MHz to 6GHz. To meet the stringent targeted specification, the concurrent design and analysis are carefully performed with optimizations in both passive and active devices. The gate capacitive division technique is proposed and proven theoretically of bandwidth extension effect and power efficiency enhancement. To validate the theory, a prototype is designed in a 0.25-μm GaAs technology. The fabricated amplifier chip is packaged in an evaluation cavity of SMA connectors. The measurement shows an average power gain of 15dB, OP1dB and PSAT of 31dBm and 32.6dBm at 3GHz, and PAE at OP1dB and PSAT points are 31.5% and 43.7% respectively. To the best of authors’ knowledge, the amplifier achieves the highest Power-added efficiency (PAE) among the similar GaAs amplifiers.
  • loading
  • X. Gu, N. N. Srinaga, L. Guo, et al., “Diplexer-based fully passive harmonic transponder for sub-6-GHz 5G-compatible IoT applications”, IEEE Trans. Microwave Theory Techn., Vol.67, No.5, pp.1675–1687, 2019.
    A. Chehri and H. T. Mouftah, “New MMSE downlink channel estimation for sub-6 GHz non-line-of-sight backhaul”, 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, pp.1–7, 2018.
    M. Shi, K. Yang, Z. Han, et al., “Coverage analysis of integrated sub-6GHz-mmWave cellular networks with hotspots”, IEEE Trans. Commun., Vol.67, No.11, pp.8151–8164, 2019.
    Y. Liu, C. Li, X. Xia, et al., “Multiband user equipment prototype hardware design for 5G communications in sub-6- GHz band”, IEEE Trans. Microwave Theory Techn., Vol.67, No.7, pp.2916–2927, 2019.
    M. Hirzallah, M. Krunz and Y. Xiao, “Harmonious cross-technology coexistence with heterogeneous traffic in unlicensed bands: Analysis and approximations”, IEEE Trans. Cogn. Commun. Netw., Vol.5, No.3, pp.690–701, 2019.
    B. Liu, X. Yi, K. Yang, et al., “A carrier aggregation transmitter front End for 5-GHz WLAN 802. 11ax application in 40-nm CMOS”, IEEE Trans. Microwave Theory Techn., Vol.68, No.1, pp.264–276, 2020.
    T. Cappello, A. Duh, T. W. Barton, et al., “A dual-band dual-output power amplifier for carrier aggregation”, IEEE Trans. Microwave Theory Techn., Vol.67, No.7, pp.3134–3146, 2019.
    M. Li, J. Pang, Y. Li, et al., “Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications”, IEEE Trans. Microwave Theory Techn., Vol.67, No.10, pp.4246–4259, 2019.
    R. T. Toh, et al., “A CMOS-SOI power amplifier technology using EDNMOS for sub 6GHz wireless applications”, IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Philadelphia, PA, pp.32–35, 2018.
    S. Li, S. S. H. Hsu, J. Zhang, et al., “A sub-6 GHz compact GaN MMIC Doherty PA with a 49.5% 6dB back-off PAE for 5G communications”, IEEE Inter. Microwave Symp., Philadelphia, PA, pp.805–807, 2018.
    J. Lindstrand, M. Törmänen and H. Sjöland, “A decade frequency range CMOS power amplifier for sub-6-GHz cellular terminals”, IEEE Microw. Compon. Lett., Vol.30, No.1, pp.54–57, 2020.
    C. -H. Wu, C. -H. Lee, W. -S. Chen, et al., “CMOS wideband amplifiers using multiple inductive-series peaking technique, ” IEEE J. Solid-State Circuits, Vol.40, No.2, pp.548–552, 2005.
    T. T. Nguyen, K. Fujii and A. Pham, “A 4-20GHz, multi-watt level, fully integrated push-pull distributed power amplifier with wideband even-order harmonic suppression”, IET Microw. Ant. Propag., Vol.13, No.13, pp.2279–2283, 2019.
    M. Roberg, S. Schafer, O. Marrufo, et al., “A 2-20GHz distributed GaN power amplifier using a novel biasing technique”, IEEE Inter. Microw. Symp., Boston, MA, USA, pp.694–697, 2019.
    B. Bunz, H. Sledzik, P. Schuh, et al., “4-18GHz AIGaN/GaN based distributed power amplifier MMIC”, IEEE European Microw. Integr. Circuits Conf., Madrid, pp.325–328, 2018.
    L. Diego, B. Haentjcns, C. Mjema, et al., “A DC to 40GHz, high linearity monolithic GaAs distributed amplifier with low DC power consumption as a high bit-rate pre-driver”, IEEE European Microw. Conf., Madrid, pp.1517–1520, 2018.
    L. Gao, Q. Ma and G. M. Rebeiz, “A 1-17GHz stacked distributed power amplifier with 19-21dBm saturated output power in 45nm CMOS SOI technology”, IEEE Inter. Microw. Symp., Philadelphia, PA, pp.454–456, 2018.
    D. Shin, I. Yom and D. Kim, “4-20GHz GaAs true-time delay amplifier MMIC”, IEEE Microw. Compon. Lett., Vol.27, No.12, pp.1119–1121, 2017.
    J. Moon, J. Kang, D. Brown, et al., “100MHz-8GHz linear distributed GaN MMIC power amplifier with improved power-added efficiency”, IEEE Topical RF/Microw. Power Amplifiers for Radio and Wireless App. Conf., Phoenix, AZ, pp.40–43, 2017.
    K. Fujii, “A DC to 22GHz, 2W high power distributed amplifier using stacked FET topology with gate periphery tapering”, IEEE Radio Freq. Integr. Circuits Symp., San Francisco, CA, pp.270–273, 2016.
    H. Wu, Q. Lin, Y. Chen, et al., “A 50MHz to 6GHz 1-Watt GaAs pHEMT stacked distributed power amplifier”, IEEE MTT-S Inter. Wireless Symp., Guangzhou, China, 2019.
    A. Grebennikov, RF and Microwave Power Amplifier Design, New York: McGraw-Hill, 2004.
    M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit”, IEEE Trans. Microwave Theory Techn., Vol.MTT-38, pp.891–895, 1990.
    T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
    D. M. Pozar, Microwave Engineering, 2nd Ed., Proc. New York: Wiley, Ch.8, 1998.
    R. -C. Liu, T. -P. Wang, L. -H. Lu, et al., “An 80GHz travelling-wave amplifier in a 90nm CMOS technology”, IEEE International Solid-State Circuits Conference, San Francisco, CA, 2005.
    X. Ding and L. Zhang, “A high-efficiency GaAs MMIC power amplifier for multi-standard system”, IEEE Microw. Compon. Lett., Vol.26, No.1, pp.55–57, 2016.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(19) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint