Volume 30 Issue 3
May  2021
Turn off MathJax
Article Contents
JIAO Tong, ZHANG Xi'nan, WANG Benfei, et al., “A Multiple-Port Three-Level DC/DC Converter for HESS with Power Sharing in DC Microgrids,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 570-583, 2021, doi: 10.1049/cje.2021.04.011
Citation: JIAO Tong, ZHANG Xi'nan, WANG Benfei, et al., “A Multiple-Port Three-Level DC/DC Converter for HESS with Power Sharing in DC Microgrids,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 570-583, 2021, doi: 10.1049/cje.2021.04.011

A Multiple-Port Three-Level DC/DC Converter for HESS with Power Sharing in DC Microgrids

doi: 10.1049/cje.2021.04.011
  • Received Date: 2019-12-25
  • In order to reduce the volume, weight and cost of conventional hybrid energy storage system (HESS) while properly exploring the complementary features of different energy storage devices for DC microgrid applications, this paper proposes a multiple-port three-level DC/DC converter. It possesses multiple ports sharing one front-end three-level DC/DC converter with an inductor and supercapacitor bank. Different types of batteries and/or multiple battery banks can be interfaced through the multiple terminals. Such a converter structure facilitates the cooperation of different energy storage devices to satisfy various power demands of DC microgrids with intermittent renewable generation plants. Moreover, the proposed structure allows power sharing among different energy storage devices, which enables more efficient cooperation of different battery banks or different types of batteries. Experimental results are presented to verify the efficacy of the proposed converter structure and its control.
  • loading
  • S. Eftekharnejad, V. Vittal, G. T. Heydt, B. Keel and J. Loehr, “Impact of increased penetration of photovoltaic generation on power systems”, IEEE Trans. Power Syst., Vol.28, No.2, pp.893–901, 2013.
    X. Lu, J. M. Guerrero, K. Sun and J. C. Vasquez, “An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy”, IEEE Trans. Power Electron., Vol.29, No.4, pp.1800–1812, April 2014.
    J. Xiao, P. Wang and L. Setyawan, “Multilevel Energy Management System for Hybridization of Energy Storages in DC Microgrids”, IEEE Trans. Smart Grid, Vol.7, No.2, pp.847–856, March 2016.
    P. Lin, P. Wang, J. Xiao, J. Wang, C. Jin and Y. Tang, “An Integral Droop for Transient Power Allocation and Output Impedance Shaping of Hybrid Energy Storage System in DC Microgrid”, IEEE Trans. Power Electron., Vol.33, No.7, pp.6262–6277, July 2018.
    L. He, L. Gu, L. Kong, Y. Gu, C. Liu and T. He, “Exploring Adaptive Reconfiguration to Optimize Energy Efficiency in Large–Scale Battery Systems”, IEEE 34th Real–Time Systems Symposium, pp.118–127, 2013.
    L. K. Gan, J. Reniers and D. Howey, “A hybrid vanadium redox/lithiumion energy storage system for off–grid renewable power”, IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, pp.1016–1023, 2017.
    H. Fadil, F. Giri, J. Guerrero, and A. Tahri, “Modeling and nonlinear control of a fuel cell/supercapacitor hybrid energy storage system for electric vehicles”, IEEE Trans. Veh. Tech., Vol.63, No.7, pp.3011–3018, Sept. 2014.
    B. Hredzak, V. G. Agelidis and M. Jang, “A model predictive control system for a hybrid battery–ultracapacitor power source”, IEEE Trans. Power Electron., Vol.29, No.3, pp.1469–1479, Mar. 2014.
    F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural and I. Aksoy, “A bidirectional nonisolated multi–input DC–DC converter for hybrid energy storage systems in electric vehicles”, IEEE Trans. Veh. Technol., Vol.65, No.10, pp.7944–7955, Oct. 2016.
    J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug–in hybrid electric vehicles”, IEEE Trans. Power Electron., Vol.27, No.1, pp.122–132, Jan 2012.
    J. Hu et al., “Hybrid Energy Storage System of an Electric Scooter Based on Wireless Power Transfer”, IEEE Trans. Ind. Informat., Vol.14, No.9, pp.4169–4178, Sept. 2018.
    J. Fang, Y. Tang, H. Li, and X. Li, “A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators”, IEEE Trans. Power Electron., Vol.33, No.4, pp.2820–2824, April 2018.
    S. Hu, Z. Liang, D. Fan, and X. He, “Hybrid ultracapacitor;battery energy storage system based on quasi–z–source topology and enhanced frequency dividing coordinated control for EV”, IEEE Trans. Power Electron., Vol.31, No.11, pp.7598–7610, Nov 2016.
    M. O. Badawy, T. Husain, Y. Sozer, and J. A. D. Abreu–Garcia, “Integrated control of an ipm motor drive and a novel hybrid energy storage system for electric vehicles”, IEEE Trans. Ind. Appl., Vol.53, No.6, pp.5810–5819, Nov 2017.
    P. J. Grbovic, P. Delarue, P. L. Moigne, and P. Bartholomeus, “A bidirectional three–level dc–dc converter for the ultracapacitor applications”, IEEE Trans. Ind. Electron., Vol.57, No.10, pp.3415–3430, Oct 2010.
    S. Dusmez, A. Hasanzadeh, and A. Khaligh, “Comparative analysis of bidirectional three–level dc–dc converter for automotive applications”, IEEE Trans. Ind. Electron., Vol.62, No.5, pp.3305–3315, May 2015.
    A. Bendre, G. Venkataramanan, D. Rosene and V. Srinivasan, “Modeling and design of a neutral–point voltage regulator for a three–level diodeclamped inverter using multiple–carrier modulation”, IEEE Trans. Ind. Electron., Vol.53, No.3, pp.718–726, June 2006.
    R. R. Ahrabi, H. Ardi, M. Elmi, and A. Ajami, “A novel step–up multiinput dc–dc converter for hybrid electric vehicles application”, IEEE Trans. Power Electron., Vol.32, No.5, pp.3549–3561, May 2017.
    U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, and K. Chaudhari, “Validation of Faster Joint Control Strategy for Battery– and Supercapacitor–Based Energy Storage System”, IEEE Trans. Ind. Electron., Vol.65, No.4, pp.3286–3295, Apr. 2018.
    Amin, R. T. Bambang, A. S. Rohman, C. J. Dronkers, R. Ortega, and A. Sasongko, “Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control”, IEEE Trans. Ind. Inform., Vol.10, No.4, pp.1992–2002, Nov. 2014.
    F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural and I. Aksoy, “A bidirectional nonisolated multi–input DC–DC converter for hybrid energy storage systems in electric vehicles”, IEEE Trans. Veh. Tech., Vol.65, No.10, pp.7944–7955, Oct. 2016.
    B. Hauke. (2009). Basic Calculation of a Boost Converter’s Power Stage [Online]. Available: http://www.ti.com/lit/an/slva372c/slva372c.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (504) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return