Citation: | PENG Pai, ZHU Fei, LIU Quan, et al., “Achieving Safe Deep Reinforcement Learning via Environment Comprehension Mechanism,” Chinese Journal of Electronics, vol. 30, no. 6, pp. 1049-1058, 2021, doi: 10.1049/cje.2021.07.025 |
R.S. Sutton and A.G. Barto, Reinforcement Learning:An Introduction, MIT press, Ambridge, Massachusetts, London, England, pp.1-5, 2018.
|
Y. Cheng, J. Peng, X. G, et al., "RLCP:A reinforcement learning method for health stage division using change points", 2018 IEEE International Conference on Prognostics and Health Management, Seattle, Washington, USA, pp.1-6, 2018.
|
J. Hwangbo, I. Sa, R. Siegwart, et al., "Control of a quadrotor with reinforcement learning", IEEE Robotics and Automation, Vol.2, No.4, pp.2096-2103, 2017.
|
D. Silver, A. Huang, CJ. Maddison, et al., "Mastering the game of Go with deep neural networks and tree search", Nature, Vol.529, No.7587, pp.484-489, 2016
|
D.Y. Meng and L.N. Sun, "Some new trends of deep learning research", Chinese Journal of Electronics, Vol.28, No.6, pp.1087-1090, 2019.
|
S. Zhang, L.N. Yao, A. Sun, et al., "Deep learning based recommender system:A survey and new perspectives", ACM Computing Surveys, Vol.52, No.1, pp.1-38, 2019.
|
P. Barré, B.C. Stöver and K.F. Müller, "Leafnet:A computer vision system for automatic plant species identification", Ecological Informatics, Vol.40, pp.50-56, 2017.
|
L.W. Wu, Y. Rao, H.L. Yu, et al., "A multi-semantics classification method based on deep learning for incredible messages on social media", Chinese Journal of Electronics, Vol.28, No.4, pp.754-763, 2019.
|
B.L. Peng, X.J. Li, J.F. Gao, et al., "Adversarial advantage actor-critic model for task-completion dialogue policy learning", 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Alberta, Canada, pp.6149-6153, 2018.
|
M. Hessel, J. Modayil, H.V. Hasselt, et al., "Rainbow:Combining improvements in deep reinforcement learning", National Conference on Artificial Intelligence, Stockholm, Sweden, pp.3215-3222, 2018.
|
A. Nair, B. McGrew, M. Andrychowicz, et al., "Overcoming exploration in reinforcement learning with demonstrations", 2018 IEEE International Conference on Robotics and Automation, Prague, Czech, pp.6292-6299, 2018.
|
M.G. Bellemare, W. Dabney and R.A. Munos, "A distributional perspective on reinforcement learning", International Conference on Machine Learning, Boston, Massachusetts, USA, pp.449-458, 2017.
|
X. Chen, Z. Li, K. Wang, et al., "Mdpbased network selection with reward optimization in hetnets", Chinese Journal of Electronics, Vol.27, No.1, pp.183-190, 2018.
|
D. Silver, T. Hubert, J.L. Schrittwieser, et al., "A general reinforcement learning algorithm that masters chess, shogi, and go through self-play", Science, Vol.362, No.6419, pp.1140-1144, 2018.
|
H. Pham and X.L. Wei, "Bellman equation and viscosity solutions for mean-field stochastic control problem", ESAIM:Control, Optimisation and Calculus of Variations, Vol.24, No.1, pp.437-461. 2018.
|
S. Hota, P. Satapathy, S.P. Pati, et al., "Net asset value prediction using extreme learning machine with dolphin swarm algorithm", 20182nd International Conference on Data Science and Business Analytics, ChangSha, Hunan, China, pp.13-18, 2018.
|
X. Xu, Z.H. Huang, L. Zuo, et al., "Manifold-based reinforcement learning via locally linear reconstruction", IEEE Transactions on Neural Networks, Vol.28, No.4, pp.934-947, 2017.
|
E. Delage and S. Mannor, "Percentile optimization in uncertain markov decision processes with application to efficient exploration", Machine Learning, Proceedings of the Twenty-Fourth International Conference, Corvallis, Oregon, USA, pp.225-232, 2007.
|
Z.Y. Wang, T. Schaul, M. Hessel, et al., "Dueling network architectures for deep reinforcement learning", International Conference on Machine Learning, New York, USA, pp.1995-2003, 2016.
|
A. Hans, D. Schneegaß, A.M. Schäfer, et al., "Safe exploration for reinforcement learning", The European Symposium on Artificial Neural Networks, Bruges, Belgium, pp.143-148, 2008.
|
M. Heger, "Consideration of risk in reinforce-ment learning", Machine Learning Proceedings, Elsevier, Amherst, Massachusetts, USA, pp.105-111, 1994.
|
F. Zhu, W. Wen, Y.C. Fu, et al., "A dual deep network based secure deep reinforcement learning method", Chinese Journal of Computers, Vol.42, No.8, pp.1-15, 2019.
|
F. Berkenkamp, M. Turchetta, A. PSchoellig et al., "Safe model-based reinforcement learning with stability guarantees", Neural Information Processing Systems, Vol.2, pp.908-918, 2017.
|
W. Saunders, G. Sastry, A. Stuhlmueller, et al., "Trial without error:Towards safe reinforcement learning via human intervention", Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Richland, USA, pp.2067-2069, 2018.
|
J. Achiam, D. Held, A. Tamar, et al., "Constrained policy optimization", Proceedings of the 34th International Conference on Machine Learning, Vol.70, pp.22-31, 2017.
|
P. Geibel and F. Wysotzki, "Risk-sensitive reinforcement learning applied to control under constraints", Journal of Artificial Intelligence Research, Vol.24, pp.81-108, 2015.
|
Z. Zhang, M. Zhao and T.W. Chow, "Binary-and multi-class group sparse canonical correlation analysis for feature extraction and classification", IEEE Transactions on Knowledge Data Engineering, Vol.25, No.10, pp.2192-2205, 2013.
|
M. Nikolic, E. Tuba and M. Tuba, "Edge detection in medical ultrasound images using adjusted canny edge detection algorithm", 2016 24th Telecommunications Forum, Belgrade, Serbia, pp.104, 2016.
|
S. Kaur and I. Singh, "Comparison between edge detection techniques", International Journal of Computer Applications, Vol.145, No.15, pp.15-18, 2016.
|
Y.J. Cha, W. Choi and O. Buyukozturk, "Deep learningbased crack damage detection using convolutional neural networks", Computer-aided Civil Infrastructure Engineering, Vol.32, No.5, pp.361-378, 2017.
|
V. Mnih, K. Kavukcuoglu, D. Silver, et al., "Humanlevel control through deep reinforcement learning", Nature, Vol.518, No.7540, pp.529-533, 2015.
|
P. He, H. Wu, C. Zeng, et al., "Truser:An approach to service recommendation based on trusted users", Chinese Journal of Computers, Vol.42, No.4, pp.851-863, 2019.
|