Volume 30 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
YANG Biao, ZHU Shengqi, HE Xiongpeng. IMM Robust Cardinality Balance Multi-Bernoulli Filter for Multiple Maneuvering Target Tracking with Interval Measurement[J]. Chinese Journal of Electronics, 2021, 30(6): 1141-1151. doi: 10.1049/cje.2021.08.009
Citation: YANG Biao, ZHU Shengqi, HE Xiongpeng. IMM Robust Cardinality Balance Multi-Bernoulli Filter for Multiple Maneuvering Target Tracking with Interval Measurement[J]. Chinese Journal of Electronics, 2021, 30(6): 1141-1151. doi: 10.1049/cje.2021.08.009

IMM Robust Cardinality Balance Multi-Bernoulli Filter for Multiple Maneuvering Target Tracking with Interval Measurement

doi: 10.1049/cje.2021.08.009
Funds:

This work is supported by the National Key R&D Program of China (No.2016YFE0200400), the National Natural Science Foundation of China (No.61771015), the Key R&D Program of Shaanxi Province (No.2017KW-ZD-12), the Innovative Research Group of National Natural Science Foundation of China (No.61621005), and the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project)(No.B18039).

  • Received Date: 2021-01-24
  • Rev Recd Date: 2021-04-05
  • Available Online: 2021-09-23
  • Publish Date: 2021-11-05
  • This paper presents a novel Interacting multi-model (IMM) Robust Cardinality balance multitarget multi-Bernoulli (R-CBMeMBer) filter to solve the maneuvering target tracking problem in the case of interval measurement, unknown detection probability and unknown clutter density. In essence, IMM R-CBMeMBer filter is an extended application of R-CBMeMBer filter. In the IMM R-CBMeMBer filter, the target state is first extended to distinguish clutter from the real target. The detection probability and model probability of the target can be adaptively updated. Then, generalized likelihood function and IMM algorithm are introduced to interactively predict and update the state of the target in the IMM R-CBMeMBer filtering process. In addition, a particle application of the IMM R-CBMeMBer filter is given, and a numerical experiment is designed under nonlinear conditions. Meanwhile, Doppler information of the target is employed to estimate the velocity of each maneuvering target. Numerical experiments also verify that the IMM R-CBMeMBer filter can effectively estimate the target position, target velocity, target detection probability and clutter number in the condition of unknown detection probability, unknown clutter rate and interval measurement.
  • loading
  • Zhengjie Li, Junwei Xie, Haowei Zhang, et al., "Adaptive sensor scheduling and resource allocation in netted collocated MIMO radar system for multi-target tracking", IEEE Access, Vol.8, pp.109976-109988, 2020.
    Kim Du Yong, Vo Ba-Ngu, Vo Ba-Tuong, et al., "A labeled random finite set online multi-object tracker for video data", Pattern Recognition, Vol.90, pp.377-389, 2019.
    Yaakov Bar-Shalom and Thomas E. Fortman, Tracking and Data Association, Academic, New York, NY, USA, pp.222-237, 1988.
    Samuel S. Blackman and Robert Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Norwood, MA, USA, pp.350-374, 1999.
    Ronald P. S. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, London, pp.565-682, 2007.
    Ronald P. S. Mahler, "Multitarget bayes filtering via firstorder multitarget moments", IEEE Transactions on Aerospace & Electronic Systems, Vol.39, No,4, pp.1152-1178, 2004.
    Ronald P. S. Mahler, "PHD filters of higher order in target number", IEEE Transactions on Aerospace & Electronic Systems, Vol.43, No,4, pp. 1523-1543, 2008.
    Ba-Tuong Vo, Ba-Ngu Vo and Antonio Cantoni, "The cardinality balanced multi-target multi-Bernoulli filter and its implementations", IEEE Transactions on Signal Processing, Vol.57, No,2, pp.409-423, 2009.
    Ba-Ngu Vo, Ba-Tuong Vo and Dinh Phung, "Labeled random finite sets and the bayes multi-target tracking filter", IEEE Transactions on Signal Processing, Vol.62, No,24, pp.6554-6567, 2014.
    Ba-Tuong Vo and Ba-Ngu Vo, "Labeled random finite sets and multi-object conjugate priors", IEEE Transactions on Signal Processing, Vol.61, No,13, pp.3460-3475, 2013.
    Ahmed Elgammal, Ramani Duraiswami, David Harwood, et al., "Background and foreground modeling using nonparametric kernel density estimation for visual surveillance", Proceedings of the IEEE, Vol.90, No,7, pp.1151-1163, 2002.
    Ronald P. S. Mahler and Adel El-Fallah, "CPHD filtering with unknown probability of detection", Proc. SPIE 7697, Signal Processing, Sensor Fusion, and Target Recognition XIX, Orlando, Florida, USA, pp.76970F-1-76970F-12, 2010.
    Ronald P. S. Mahler and Adel El-Fallah, "CPHD and PHD filters for unknown backgrounds, Part III:Tractable multitarget filtering in dynamic clutter", Proc. SPIE 7698, Signal and Data Processing of Small Targets 2010, Orlando, Florida, USA, pp.76980F-1-76980F-12, 2010.
    Ba-Tuong Vo and Ba-Ngu Vo, "Robust multi-Bernoulli filtering", IEEE Journal of Selected Topics in Signal Processing, Vol.7, No,3, pp.399-409, 2013
    Weijian Si, Hongfan Zhu and Zhiyu Qu, "Robust poisson multi-Bernoulli filter with unknown clutter rate", IEEE Access, Vol.7, pp.117871-117882, 2019.
    Rezatofighi Seyed Hamid, Gould Stephen, Ba-Tuong Vo, et al., "Multi-target tracking with time-varying clutter rate and detection profile:Application to time-lapse cell microscopy sequences", IEEE Transactions on Medical Imaging, Vol.34, No,6, pp.1336-1348, 2015.
    Du Yong Kim and Moongu Jeon, "Robust multi-Bernoulli filtering for visual tracking", Proc. of the 2014 International Conference on Control, Automation and Information Sciences (ICCAIS 2014), Gwangju, South Korea, pp.47-52, 2014.
    Amadou Gning, Branko Ristic and Lyudmila Mihaylova, "Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty", IEEE Transactions on Signal Processing, Vol.60, No,5, pp.2138-2151, 2012.
    Hongwei, Zhang and Weixin Xie, "Constrained unscented Kalman filtering for bearings-only maneuvering target tracking", Chinese Journal of Electronics, Vol.29, No,3, pp.501-507, 2020.
    Weihua Wu, Hemin Sun, Yichao Cai, et al., "Tracking multiple maneuvering targets hidden in the DBZ based on the MMGLMB filter", IEEE Transactions on Signal Processing, Vol.68, pp.2912-2924, 2020.
    Yaowen Fu, Jianqian Long and Wei Yang, "Maneuvering multi-target tracking using the multi-model cardinalized probability hypothesis density filter", Chinese Journal of Electronics, Vol.22, No,3, pp.634-640, 2013.
    Bao Zhichao, Jiang Qiuxi and Liu Fangzheng, "Multiple model efficient particle filter based track-before-detect for maneuvering weak targets", Journal of Systems Engineering and Electronics, Vol.31, No,3, pp.647-656, 2020.
    Sun-yong Wu, Xu-dong Dong, Jun Zhao, et al., "A fast implementation of interactive-model generalized labeled multi-bernoulli filter for interval measurements", Signal Processing, Vol.164, pp.345-353, 2019.
    Bao Zhichao, Jiang Qiuxi and Liu Fangzheng, "A metric for performance evaluation of multi-target tracking algorithms", IEEE Transactions on Signal Processing, Vol.59, No,7, pp.3452-3457, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return