Volume 31 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
SHEN Tangyao, ZHAN Yiqiang, SHI Lei, “Time-Resolved Spectroscopy for the Study of Perovskite,” Chinese Journal of Electronics, vol. 31, no. 6, pp. 1053-1071, 2022, doi: 10.1049/cje.2022.00.064
Citation: SHEN Tangyao, ZHAN Yiqiang, SHI Lei, “Time-Resolved Spectroscopy for the Study of Perovskite,” Chinese Journal of Electronics, vol. 31, no. 6, pp. 1053-1071, 2022, doi: 10.1049/cje.2022.00.064

Time-Resolved Spectroscopy for the Study of Perovskite

doi: 10.1049/cje.2022.00.064
Funds:  This work was supported by the China National Key Basic Research Program (2021YFA1400603), the National Natural Science Foundation of China (91963212, 12234007, 12221004), and the Science and Technology Commission of Shanghai Municipality (19XD1434600, 2019SHZDZX01, 19DZ2253000, 20501110500, 21DZ1101500)
More Information
  • Author Bio:

    Tangyao SHEN was born in Shanghai, China. He received the B.E. degree in physics from Fudan University. He is a Ph.D. candidate of physics. His research interests include perovskites, time-resolved spectroscopy, and photonic bandgap. (Email: 19110190037@fudan.edu.cn)

    Yiqiang ZHAN was born in Fuzhou, China. He received the Ph.D. degree in physics from Fudan University. He is a Professor of Fudan University. His research interests include organic/hybrid film solar units, smart sensors and memristors and their application in artificial neural network. (Email: yqzhan@fudan.edu.cn)

    Lei SHI (corresponding author) received the Ph.D. degree at Fudan University in 2010, joined Department of Physics, Fudan University in 2013, and was promoted to Full Professor in 2019. He worked as a Visiting Scholar in National University of Singapore, in 2010, a Post-doctoral Scholar in Instituto de Ciencia de Materiales de Madrid CSIC, Spain, from 2011 to 2012, and Aalto University, Finland, in 2013. His research interests include photonic crystals, nanophotonics and optical metrology. Till now, he has published more than 40 SCI papers as first/corresponding author in journals such as Nature Photoincs, Nature Communiations, Physical Review Letters, Advanced Materials, Light: Science & Applications, and Science Bulletins. (Email: lshi@fudan.edu.cn)

  • Received Date: 2022-03-26
  • Accepted Date: 2022-06-21
  • Available Online: 2022-11-03
  • Publish Date: 2022-11-05
  • Carrier behavior in halide perovskite is a critical factor impacting on the properties of material, and finally determines the performance of perovskite photovoltaic and luminescent devices. It is necessary to clarify the mechanism of carrier relaxation and migration at extremely microscopic time scale. Time-resolved spectroscopy provides a powerful means for the detection of ultrafast processes, which has been an indispensable technique in research on perovskites. In this review, we will elaborate the basic principle and system implementation of time-resolved spectroscopy, and introduce the applications for carrier dynamics in perovskite.
  • loading
  • [1]
    A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, “Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2),” ECS Meeting Abstracts, IOP Publishing, vol.MA2006-02, no.7, p.397, 2006.
    [2]
    M. A. Green and A. Ho-Baillie, “Perovskite solar cells: The birth of a new era in photovoltaics,” ACS Energy Letters, vol.2, no.4, pp.822–830, 2017. doi: 10.1021/acsenergylett.7b00137
    [3]
    H. J. Snaith, “Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells,” The Journal of Physical Chemistry Letters, vol.4, no.21, pp.3623–3630, 2013. doi: 10.1021/jz4020162
    [4]
    B. Cai, Y. Xing, Z. Yang, W. H. Zhang, and J. Qiu, “High performance hybrid solar cells sensitized by organolead halide perovskites,” Energy & Environmental Science, vol.6, no.5, pp.1480–1485, 2013.
    [5]
    S. Yakunin, M. Sytnyk, D. Kriegner, et al., “Detection of x-ray photons by solution-processed lead halide perovskites,” Nature Photonics, vol.9, no.7, pp.444–449, 2015. doi: 10.1038/nphoton.2015.82
    [6]
    F. Deschler, M. Price, S. Pathak, et al., “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” The Journal of Physical Chemistry Letters, vol.5, no.8, pp.1421–1426, 2014. doi: 10.1021/jz5005285
    [7]
    H. Cho, C. Wolf, J. S. Kim, et al., “High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes,” Advanced Materials, vol.29, no.31, article no.1700579, 2017. doi: 10.1002/adma.201700579
    [8]
    J. You, Z. Hong, Y. Yang, et al., “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano, vol.8, no.2, pp.1674–1680, 2014. doi: 10.1021/nn406020d
    [9]
    L. K. Ono, M. R. Leyden, S. Wang, et al., “Organometal halide perovskite thin films and solar cells by vapor deposition,” Journal of Materials Chemistry A, vol.4, no.18, pp.6693–6713, 2016. doi: 10.1039/C5TA08963H
    [10]
    H. Lu, Y. Liu, P. Ahlawat, et al., “Vapor-assisted deposition of highly efficient, stable black-phase fapbi3 perovskite solar cells,” Science, vol.370, no.6512, article no.eabb8985, 2020. doi: 10.1126/science.abb8985
    [11]
    S. Liu, M. He, X. Di, P. Li, et al., “Precipitation and tunable emission of cesium lead halide perovskites (CsPbX3, x=br, i) qds in borosilicate glass,” Ceramics International, vol.44, no.4, pp.4496–4499, 2018. doi: 10.1016/j.ceramint.2017.12.012
    [12]
    L. Lanzetta, J. M. Marin-Beloqui, I. Sanchez-Molina, et al., “Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices,” ACS Energy Letters, vol.2, no.7, pp.1662–1668, 2017. doi: 10.1021/acsenergylett.7b00414
    [13]
    T. Baikie, Y. Fang, J. M. Kadro, et al., “Synthesis and crystal chemistry of the hybrid perovskite CH3NH3 for solid-state sensitised solar cell applications,” Journal of Materials Chemistry A, vol.1, no.18, pp.5628–5641, 2013. doi: 10.1039/c3ta10518k
    [14]
    S. Sun, T. Salim, N. Mathews, et al., “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy & Environmental Science, vol.7, no.1, pp.399–407, 2014.
    [15]
    S. D. Stranks, G. E. Eperon, G. Grancini, et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol.342, no.6156, pp.341–344, 2013. doi: 10.1126/science.1243982
    [16]
    M. Li, S. Bhaumik, T. W. Goh, et al., “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nature Communications, vol.8, article no.14350, 2017. doi: 10.1038/ncomms14350
    [17]
    J. P. Correa-Baena, M. Saliba, T. Buonassisi, et al., “Promises and challenges of perovskite solar cells,” Science, vol.358, no.6364, pp.739–744, 2017. doi: 10.1126/science.aam6323
    [18]
    W. Chen, W. Du, Y. Sun, et al., “Improving the efficiency of hole-conductor-free carbon-based planar perovskite solar cells with long-term stability by using the hydrazine acetate additive via the one-step method,” ACS Applied Electronic Materials, vol.3, no.12, pp.5211–5218, 2021.
    [19]
    T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, et al., “Electronic properties of meso-superstructured and planar organometal halide perovskite films: Charge trapping, photodoping, and carrier mobility,” ACS nano, vol.8, no.7, pp.7147–7155, 2014. doi: 10.1021/nn502115k
    [20]
    S. Yun, Y. Qin, A. R. Uhl, N. Vlachopoulos, et al., “New-generation integrated devices based on dye-sensitized and perovskite solar cells,” Energy & Environmental Science, vol.11, no.3, pp.476–526, 2018.
    [21]
    R. He, S. Ren, C. Chen, Z. Yi, et al., “Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells,” Energy & Environmental Science, vol.14, no.11, pp.5723–5759, 2021.
    [22]
    J. Yan and B. R. Saunders, “Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells,” Rsc Advances, vol.4, no.82, pp.43286–43314, 2014. doi: 10.1039/C4RA07064J
    [23]
    J. M. Frost and A. Walsh, “What is moving in hybrid halide perovskite solar cells?” Accounts of Chemical Research, vol.49, no.3, pp.528–535, 2016.
    [24]
    H. S. Jung and N. G. Park, “Perovskite solar cells: From materials to devices,” Small, vol.11, no.1, pp.10–25, 2015. doi: 10.1002/smll.201402767
    [25]
    P. Li, Y. Zhang, C. Liang, G. Xing, et al., “Phase pure 2d perovskite for high-performance 2d-3d heterostructured perovskite solar cells,” Advanced Materials, vol.30, no.52, article no.1805323, 2018. doi: 10.1002/adma.201805323
    [26]
    Z. Yang, B. H. Babu, S. Wu, T. Liu, et al., “Review on practical interface engineering of perovskite solar cells: From efficiency to stability,” Solar Rrl, vol.4, no.2, article no.1900257, 2020. doi: 10.1002/solr.201900257
    [27]
    K. Chen, Q. Hu, T. Liu, L. Zhao, et al., “Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells,” Advanced Materials, vol.28, no.48, pp.10718–10724, 2016. doi: 10.1002/adma.201604048
    [28]
    Z. K. Wang, M. Li, D. X. Yuan, X. B. Shi, et al., “Improved hole interfacial layer for planar perovskite solar cells with efficiency exceeding 15%,” ACS Applied Materials & Interfaces, vol.7, no.18, pp.9645–9651, 2015.
    [29]
    A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, et al., “Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction,” Science, vol.370, no.6522, pp.1300–1309, 2020. doi: 10.1126/science.abd4016
    [30]
    B. R. Sutherland and E. H. Sargent, “Perovskite photonic sources,” Nature Photonics, vol.10, no.5, pp.295–302, 2016. doi: 10.1038/nphoton.2016.62
    [31]
    P. Pang, G. Jin, C. Liang, B. Wang, et al., “Rearranging low-dimensional phase distribution of quasi-2d perovskites for efficient sky-blue perovskite light-emitting diodes,” ACS nano, vol.14, no.9, pp.11420–11430, 2020. doi: 10.1021/acsnano.0c03765
    [32]
    S. Zhang, C. Yi, N. Wang, Y. Sun, et al., “Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells,” Advanced Materials, vol.29, no.22, article no.1606600, 2017. doi: 10.1002/adma.201606600
    [33]
    K. Wang, S. Wang, S. Xiao, and Q. Song, “Recent advances in perovskite micro-and nanolasers,” Advanced Optical Materials, vol.6, no.18, article no.1800278, 2018. doi: 10.1002/adom.201800278
    [34]
    W. Sun, Y. Liu, G. Qu, Y. Fan, W. Dai, Y. Wang, Q. Song, J. Han, and S. Xiao, “Lead halide perovskite vortex microlasers,” Nature Communications, vol.11, article no.4862, 2020. doi: 10.1038/s41467-021-23079-y
    [35]
    Y. Xu, Q. Chen, C. Zhang, R. Wang, et al., “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” Journal of the American Chemical Society, vol.138, no.11, pp.3761–3768, 2016. doi: 10.1021/jacs.5b12662
    [36]
    Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Letters, vol.16, no.1, pp.448–453, 2016. doi: 10.1021/acs.nanolett.5b04110
    [37]
    L. M. Herz, “Charge-carrier dynamics in organic-inorganic metal halide perovskites,” Annual Review of Physical Chemistry, vol.67, pp.65–89, 2016. doi: 10.1146/annurev-physchem-040215-112222
    [38]
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, “Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications,” Journal of the American Chemical Society, vol.136, no.33, pp.11610–11613, 2014. doi: 10.1021/ja506624n
    [39]
    B. Yang and K. Han, “Charge-carrier dynamics of lead-free halide perovskite nanocrystals,” Accounts of Chemical Research, vol.52, no.11, pp.3188–3198, 2019. doi: 10.1021/acs.accounts.9b00422
    [40]
    Y. Lv, R. Yuan, B. Cai, B. Bahrami, et al., “High-efficiency perovskite solar cells enabled by anatase tio2 nanopyramid arrays with an oriented electric field,” Angewandte Chemie, vol.132, no.29, pp.12067–12074, 2020. doi: 10.1002/ange.201915928
    [41]
    R. G. W. Norrish and G. Porter, “Chemical reactions produced by very high light intensities,” Nature, vol.164, no.4172, pp.658–658, 1949.
    [42]
    M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotechnology, vol.10, no.1, pp.25–34, 2015. doi: 10.1038/nnano.2014.311
    [43]
    T. Heilpern, M. Manjare, A. O. Govorov, G. P. Wiederrecht, S. K. Gray, et al., “Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements,” Nature Communications, vol.9, article no.1853, 2018. doi: 10.1038/s41467-018-04289-3
    [44]
    A. M. Brown, R. Sundararaman, P. Narang, A. M. Schwartzberg, et al., “Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles,” Physical Review Letters, vol.118, no.8, article no.087401, 2017. doi: 10.1103/PhysRevLett.118.087401
    [45]
    T. Goodson, “Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy,” Accounts of Chemical Research, vol.38, no.2, pp.99–107, 2005. doi: 10.1021/ar020247w
    [46]
    K. Ramasesha, S. R. Leone, and D. M. Neumark, “Real-time probing of electron dynamics using attosecond time-resolved spectroscopy,” Annual Review of Physical Chemistry, vol.67, pp.41–63, 2016. doi: 10.1146/annurev-physchem-040215-112025
    [47]
    K. E. Knowles, M. D. Koch, and J. L. Shelton, “Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: Spectroelectrochemistry, microscopy, and identification of thermal contributions,” Journal of Materials Chemistry C, vol.6, no.44, pp.11853–11867, 2018. doi: 10.1039/C8TC02977F
    [48]
    H. Hamaguchi and T. L. Gustafson, “Ultrafast time-resolved spontaneous and coherent raman spectroscopy: The structure and dynamics of photogenerated transient species,” Annual Review of Physical Chemistry, vol.45, no.1, pp.593–622, 1994. doi: 10.1146/annurev.pc.45.100194.003113
    [49]
    J. M. Friedman, “[11] TIme-resolved resonance raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin,” Methods in Enzymology, vol.232, pp.205–231, 1994. doi: 10.1016/0076-6879(94)32049-7
    [50]
    T. Fujino and T. Tahara, “Picosecond time-resolved raman study of trans-azobenzene,” The Journal of Physical Chemistry A, vol.104, no.18, pp.4203–4210, 2000. doi: 10.1021/jp992757m
    [51]
    S. Yamaguchi and H. O. Hamaguchi, “Convenient method of measuring the chirp structure of femtosecond white-light continuum pulses,” Applied Spectroscopy, vol.49, no.10, pp.1513–1515, 1995. doi: 10.1366/0003702953965434
    [52]
    S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, et al., “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Physical Review A, vol.59, no.3, article no.2369, 1999. doi: 10.1103/PhysRevA.59.2369
    [53]
    T. Barillot, P. Matia-Hernando, D. Greening, et al., “Towards xuv pump-probe experiments in the femtosecond to sub-femtosecond regime: New measurement of the helium two-photon ionization cross-section,” Chemical Physics Letters, vol.683, pp.38–42, 2017. doi: 10.1016/j.cplett.2017.05.026
    [54]
    T. W. Kee, “Femtosecond pump-push-probe and pump-dump-probe spectroscopy of conjugated polymers: New insight and opportunities,” The Journal of Physical Chemistry Letters, vol.5, no.18, pp.3231–3240, 2014. doi: 10.1021/jz501549h
    [55]
    L. Marcu, P. M. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics, CRC Press, Boca Raton, USA, 2014.
    [56]
    M. Komura and S. Itoh, “Fluorescence measurement by a streak camera in a single-photon-counting mode,” Photosynthesis Research, vol.101, no.2, pp.119–133, 2009. doi: 10.1007/s11120-009-9463-x
    [57]
    J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, et al., “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nature Communications, vol.8, article no.376, 2017. doi: 10.1038/s41467-017-00546-z
    [58]
    D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, et al., “Hot carrier solar cells: Principles, materials and design,” Physica E: Low-dimensional Systems and Nanostructures, vol.42, no.10, pp.2862–2866, 2010. doi: 10.1016/j.physe.2009.12.032
    [59]
    X. Wen, Y. Feng, S. Huang, F. Huang, et al., “Defect trapping states and charge carrier recombination in organic-inorganic halide perovskites,” Journal of Materials Chemistry C, vol.4, no.4, pp.793–800, 2016. doi: 10.1039/C5TC03109E
    [60]
    Y. Yang, D. P. Ostrowski, R. M. France, et al., “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nature Photonics, vol.10, no.1, pp.53–59, 2016. doi: 10.1038/nphoton.2015.213
    [61]
    M. Righetto, S. S. Lim, D. Giovanni, et al., “Hot carriers perspective on the nature of traps in perovskites,” Nature Communications, vol.11, article no.2712, 2020. doi: 10.1038/s41467-020-16463-7
    [62]
    J. Yang, X. Wen, H. Xia, et al., “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nature Communications, vol.8, article no.14120, 2017. doi: 10.1038/ncomms14120
    [63]
    J. S. Manser and P. V. Kamat, “Band filling with free charge carriers in organometal halide perovskites,” Nature Photonics, vol.8, no.9, pp.737–743, 2014. doi: 10.1038/nphoton.2014.171
    [64]
    K. Miyata, T. L. Atallah, and X. Y. Zhu, “Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation,” Science Advances, vol.3, no.10, article no.e1701469, 2017. doi: 10.1126/sciadv.1701469
    [65]
    O. Selig, A. Sadhanala, C. Muller, et al., “Organic cation rotation and immobilization in pure and mixed methylammonium lead-halide perovskites,” Journal of the American Chemical Society, vol.139, no.11, pp.4068–4074, 2017. doi: 10.1021/jacs.6b12239
    [66]
    F. Thouin, A. R. Srimath Kandada, D. A. Valverde-Chávez, et al., “Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites,” Chemistry of Materials, vol.31, no.17, pp.7085–7091, 2019. doi: 10.1021/acs.chemmater.9b02267
    [67]
    D. Ghosh, E. Welch, A. J. Neukirch, A. Zakhidov, and S. Tretiak, “Polarons in halide perovskites: A perspective,” The Journal of Physical Chemistry Letters, vol.11, no.9, pp.3271–3286, 2020. doi: 10.1021/acs.jpclett.0c00018
    [68]
    H. H. Fang, S. Adjokatse, S. Shao, J. Even, and M. A. Loi, “Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites,” Nature Communications, vol.9, article no.243, 2018. doi: 10.1038/s41467-017-02684-w
    [69]
    Y. Liu, H. Lu, J. Niu, et al., “Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films,” AIP Advances, vol.8, no.9, article no.095108, 2018. doi: 10.1063/1.5042489
    [70]
    L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, and C. Burda, “Femtosecond time-resolved transient absorption spectroscopy of ch3nh3pbi3 perovskite films: Evidence for passivation effect of pbi2,” Journal of the American Chemical Society, vol.136, no.35, pp.12205–12208, 2014. doi: 10.1021/ja504632z
    [71]
    Q. Chen, J. Luo, R. He, et al., “Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells,” Advanced Energy Materials, vol.11, no.29, article no.2101045, 2021. doi: 10.1002/aenm.202101045
    [72]
    A. Ren, H. Lai, X. Hao, et al., “Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses,” Joule, vol.4, no.6, pp.1263–1277, 2020. doi: 10.1016/j.joule.2020.04.013
    [73]
    P. Papagiorgis, A. Manoli, S. Michael, et al., “Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals,” ACS Nano, vol.13, no.5, pp.5799–5809, 2019. doi: 10.1021/acsnano.9b01398
    [74]
    H. Kawai, G. Giorgi, A. Marini, and K. Yamashita, “The mechanism of slow hot-hole cooling in lead-iodide perovskite: First-principles calculation on carrier lifetime from electron-phonon interaction,” Nano Letters, vol.15, no.5, pp.3103–3108, 2015. doi: 10.1021/acs.nanolett.5b00109
    [75]
    X. Zhang, S. Yuan, H. Lu, et al., “Hydrazinium salt as additive to improve film morphology and carrier lifetime for high-efficiency planar-heterojunction perovskite solar cells via one-step method,” ACS Applied Materials & Interfaces, vol.9, no.42, pp.36810–36816, 2017. doi: 10.1021/acsami.7b11168
    [76]
    H. Lu, H. Zhang, S. Yuan, J. Wang, Y. Zhan, and L. Zheng, “An optical dynamic study of mapbbr 3 single crystals passivated with mapbcl 3/i 3-mapbbr 3 heterojunctions,” Physical Chemistry Chemical Physics, vol.19, no.6, pp.4516–4521, 2017. doi: 10.1039/C6CP07182A
    [77]
    A. H. Hill, K. E. Smyser, C. L. Kennedy, E. S. Massaro, and E. M. Grumstrup, “Screened charge carrier transport in methylammonium lead iodide perovskite thin films,” The Journal of Physical Chemistry Letters, vol.8, no.5, pp.948–953, 2017. doi: 10.1021/acs.jpclett.7b00046
    [78]
    Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, et al., “Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy,” Science, vol.356, no.6333, pp.59–62, 2017. doi: 10.1126/science.aam7744
    [79]
    H. Hong, J. Zhang, J. Zhang, et al., “Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface,” Journal of the American Chemical Society, vol.140, no.44, pp.14952–14957, 2018. doi: 10.1021/jacs.8b09353
    [80]
    J. Wei, H. Li, Y. Zhao, W. Zhou, et al., “Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network,” Nano Energy, vol.26, pp.139–147, 2016. doi: 10.1016/j.nanoen.2016.05.023
    [81]
    Z. Wang, Z. Shi, T. Li, Y. Chen, and W. Huang, “Stability of perovskite solar cells: A prospective on the substitution of the a cation and x anion,” Angewandte Chemie International Edition, vol.56, no.5, pp.1190–1212, 2017. doi: 10.1002/anie.201603694
    [82]
    X. Yin, C. Wang, D. Zhao, N. Shrestha, et al., “Binary hole transport materials blending to linearly tune homo level for high efficiency and stable perovskite solar cells,” Nano Energy, vol.51, pp.680–687, 2018. doi: 10.1016/j.nanoen.2018.07.027
    [83]
    I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, “A layered hybrid perovskite solar-cell absorber with enhanced moisture stability,” Angewandte Chemie International Edition, vol.53, no.42, pp.11232–11235, 2014. doi: 10.1002/anie.201406466
    [84]
    T. Niu, H. Ren, B. Wu, Y. Xia, X. Xie, Y. Yang, X. Gao, Y. Chen, and W. Huang, “Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics,” The Journal of Physical Chemistry Letters, vol.10, no.10, pp.2349–2356, 2019. doi: 10.1021/acs.jpclett.9b00750
    [85]
    L. Etgar, “The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite?,” Energy & Environmental Science, vol.11, no.2, pp.234–242, 2018.
    [86]
    Z. Wang, Q. Wei, X. Liu, L. Liu, et al., “Spacer cation tuning enables vertically oriented and graded quasi-2d perovskites for efficient solar cells,” Advanced Functional Materials, vol.31, no.5, article no.2008404, 2021. doi: 10.1002/adfm.202008404
    [87]
    J. Liu, J. Leng, K. Wu, J. Zhang, and S. Jin, “Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films,” Journal of the American Chemical Society, vol.139, no.4, pp.1432–1435, 2017. doi: 10.1021/jacs.6b12581
    [88]
    S. Panuganti, L. V. Besteiro, E. S. Vasileiadou, et al., “Distance dependence of forster resonance energy transfer rates in 2D perovskite quantum wells via control of organic spacer length,” Journal of the American Chemical Society, vol.143, no.11, pp.4244–4252, 2021. doi: 10.1021/jacs.0c12441
    [89]
    M. Shao, T. Bie, L. Yang, Y. Gao, et al., “Over 21% efficiency stable 2D perovskite solar cells,” Advanced Materials, vol.34, no.1, article no.2107211, 2022. doi: 10.1002/adma.202107211
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (2198) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return