Citation: | LI Jie, SHI Lihua, JIN Xin, et al. “Efficient and Explicit Fourier Modal Method for Ultrathin Metallic Gratings”. Chinese Journal of Electronics, vol. 31 no. 6. doi: 10.1049/cje.2022.00.085 |
[1] |
C. Y. Zhang, Y. K. Wang, M. J. Lu, et al., “Nonreciprocal absorber of subwavelength metallic gratings,” Jpn. J. Appl. Phys., vol.57, no.10, article no.100305, 2018. doi: 10.7567/JJAP.57.100305
|
[2] |
J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett., vol.11, no.6, pp.2195–2201, 2011. doi: 10.1021/nl101875t
|
[3] |
J. Wu, C. Z. Zhou, H. C. Cao, and A. D. Hu, “Polarization-dependent and -independent spectrum selective absorption based on a metallic grating structure,” Optics Communications, vol.309, pp.57–63, 2013. doi: https://doi.org/10.1016/j.optcom.2013.07.012
|
[4] |
I. Koirala, V. R. Shrestha, C. S. Park, et al., “Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure,” Scientific Reports, vol.7, article no.40073, 2017. doi: 10.1038/srep40073
|
[5] |
D. J. Hu, P. Wang, P. Lin, et al., “Design of ultra-thin metallic grating based circular polarizer in the near infrared,” Proceedings of SPIE: Infrared Sensors, Devices, and Applications V, vol.9609, article no.96090M, 2015. doi: 10.1117/12.2187598
|
[6] |
M. G. Moharam, E. B. Grann, D. A. Pommet, et al., “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol.12, no.5, pp.1068–1076, 1995. doi: 10.1364/JOSAA.12.001068
|
[7] |
L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol.13, no.5, pp.1024–1035, 1996. doi: 10.1364/JOSAA.13.001024
|
[8] |
E. L. Tan, “Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings,” J. Mod. Opt., vol.53, no.4, pp.417–428, 2006. doi: 10.1080/09500340500407701
|
[9] |
P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A., vol.13, no.4, pp.779–784, 1996. doi: 10.1364/JOSAA.13.000779
|
[10] |
I. Semenikhin, M. Zanuccoli, M. Benzi, et al., “Computational efficient RCWA method for simulation of thin film solar cells,” Opt. Quantum Electron., vol.44, no.3–5, pp.149–154, 2012. doi: 10.1007/s11082-012-9560-5
|
[11] |
J. Li, L. Shi, Y. Ma, et al., “Efficient implementation of rigorous coupled-wave analysis for analyzing binary gratings,” IEEE Antennas and Wireless Propagation Letters, vol.19, pp.2132–2135, 2020. doi: 10.1109/LAWP.2020.3024640
|
[12] |
J. Li, J. Wang, Z. Sun, et al., “Efficient rigorous coupled-wave analysis without solving eigenvalues for analyzing one-dimensional ultrathin periodic structures,” IEEE Access, vol.8, pp.198131–198138, 2020. doi: 10.1109/ACCESS.2020.3034760
|
[13] |
J. Li, L. Shi, Y. Ma, et al., “Efficient and stable implementation of RCWA for ultrathin multilayer gratings: T-matrix approach without solving eigenvalues,” IEEE Antenn. Wirel. Propag. Lett., vol.20, no.1, pp.83–87, 2021. doi: 10.1109/LAWP.2020.3041299
|
[14] |
I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, et al., “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B, vol.79, no.16, article no.161406, 2009. doi: 10.1103/PhysRevB.79.161406
|
[15] |
S. S. Xiao, J. G. Zhang, P. Liang, et al., “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett., vol.97, article no.071116, 2010. doi: https://doi.org/10.1063/1.3481397
|
[16] |
G. D’Aguanno, N. Mattiucci, A. Alu, and et al., “Quenched optical transmission in ultrathin subwavelength plasmonic gratings,” Phys. Rev. B., vol.83, no.3, article no.035426, 2011. doi: 10.1103/PhysRevB.83.035426
|
[17] |
S. W. Kim, L. Pang, B. Hong, et al., “Experimental demonstration of quenched transmission effect of an ultrathin metallic grating,” Opt. Lett., vol.41, no.7, pp.1522–1525, 2016. doi: 10.1364/OL.41.001522
|