Citation: | LI Yang, ZHANG Shutao, REN Xiaohui, et al. “Real-World Wireless Network Modeling and Optimization: From Model/Data-Driven Perspective”. Chinese Journal of Electronics, vol. 31 no. 6. doi: 10.1049/cje.2022.00.191 |
[1] |
Xu Wenwei, Zhang Gong, Bai Bo, et al., “Ten key ICT challenges in the post-Shannon era,” Scientia Sinica Mathematica, vol.51, no.7, pp.1095–1138, 2021. (in Chinese) doi: 10.1360/SSM-2021-0013
|
[2] |
Huawei Technologies, “Huawei 5G wireless network planning solution white paper,” Available at: https://www.huawei.com/en/huaweitech/industry-insights/outlook/mobile-broadband/insights-reports/5g-wireless-network-plan-solution-whitepaper, 2018-11.
|
[3] |
C. -X. Wang, J. Bian, J. Sun, et al., “A Survey of 5G channel measurements and models,” IEEE Communications Surveys & Tutorials, vol.20, no.4, pp.3142–3168, 2018. doi: 10.1109/COMST.2018.2862141
|
[4] |
J. Bian, C. -X. Wang, X. Gao, et al., “A general 3D non-stationary wireless channel model for 5G and beyond,” IEEE Transactions on Wireless Communications, vol.20, no.5, pp.3211–3224, 2021. doi: 10.1109/TWC.2020.3047973
|
[5] |
J. Huang, C. -X. Wang, L. Bai, et al., “A big data enabled channel model for 5G wireless communication systems,” IEEE Transactions on Big Data, vol.6, no.2, pp.211–222, 2020. doi: 10.1109/TBDATA.2018.2884489
|
[6] |
Shutao Zhang, Xinzhi Ning, Xi Zheng, et al., “A physics-based and data-driven approach for localized statistical channel modeling,” presented in the 34th International Teletraffic Congress (ITC), Shenzhen, China, Available at: https://www.researchgate.net/publication/368350585, 2022
|
[7] |
X. Ning, S. Zhang, X. Zheng, et al., “Multi-grid-based localized statistical channel modeling: A radio map approach,” IEEE International Symposium on Wireless Communication Systems, Hangzhou, China, pp.1–6, 2022.
|
[8] |
ETSI TR 138 901 V16.1.0: 2020, Study on Channel Model for Frequencies from 0.5 to 100 GHz, Available at: https://standards.iteh.ai/catalog/standards/etsi/36c589cf-c0ee-4e2d-8079-d5efd4fa6f7b/etsi-tr-138-901-v16.1.0-2020-11.
|
[9] |
J. Zhou, W. Zhao, and S. Chen, “Dynamic network slice scaling assisted by prediction in 5G network,” IEEE Access, vol.8, pp.133700–133712, 2020. doi: 10.1109/ACCESS.2020.3010623
|
[10] |
L. N. Wang, C. R. Zang, and Y. Y. Cheng, “The short-term prediction of the mobile communication traffic based on the product seasonal model,” SN Applied Sciences, vol.2, no.3, pp.1–9, 2020. doi: https://doi.org/10.1007/s42452-020-2158-9
|
[11] |
D. Clemente, G. Soares, D. Fernandes, et al., “Traffic forecast in mobile networks: Classification system using machine learning,” 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, pp.1–5, 2019.
|
[12] |
J. Huang and M. Xiao, “Mobile Network Traffic Prediction Based on Seasonal Adjacent Windows Sampling and Conditional Probability Estimation,” IEEE Transactions on Big Data, vol.8, no.5, pp.1155–1168, 2022. doi: 10.1109/TBDATA.2020.3014049
|
[13] |
Q. T. Tran, L. Hao, and Q. K. Trinh, “A comprehensive research on exponential smoothing methods in modeling and forecasting cellular traffic,” Concurrency and Computation: Practice and Experience, vol.32, no.10, article no.e5602, 2020. doi: 10.1002/cpe.5602
|
[14] |
A. Perveen, R. Abozariba, M. Patwary, et al., “Dynamic traffic forecasting and fuzzy-based optimized admission control in federated 5G-open RAN networks,” Neural Computing and Applications, DOI: 10.1007/s00521-021-06206-0, 2021.
|
[15] |
Y. Yamada, R. Shinkuma, T. Sato, et al., “Feature-selection based data prioritization in mobile traffic prediction using machine learning,” 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, pp.1–6, 2018.
|
[16] |
H. Xia, X. Wei, Y. Gao, et al., “Traffic prediction based on ensemble machine learning strategies with bagging and lightgbm,” 2019 IEEE International Conference on Communications Workshops, Shanghai, China, pp.1–6, 2019.
|
[17] |
C. Liu, T. Wu, Z. Li, et al., “Individual traffic prediction in cellular networks based on tensor completion,” International Journal of Communication Systems, vol.34, no.16, article no.e4952, 2021. doi: 10.1002/dac.4952
|
[18] |
T. N. Weerasinghe, I. A. M. Balapuwaduge, and F. Y. Li. “Supervised learning based arrival prediction and dynamic preamble allocation for bursty traffic,” 2019 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, pp.1–6, 2019.
|
[19] |
R. Abozariba, M. K. Naeem, M. Asaduzzaman, et al., “Uncertaintyaware RAN slicing via machine learning predictions in next-generation networks,” 2020 IEEE 92nd Vehicular Technology Conference, Victoria, BC, Canada, pp.1–6, 2020.
|
[20] |
L. Ale, N.Zhang, S. A. King, et al., “Spatio-temporal Bayesian learning for mobile edge computing resource planning in smart cities,” ACM Transactions on Internet Technology (TOIT), vol.21, no.3, pp.1–21, 2021. doi: 10.1145/3448613
|
[21] |
J. Zhang, Y. Zheng, J. Sun, et al., “Flow prediction in spatiotemporal networks based on multitask deep learning,” IEEE Transactions on Knowledge and Data Engineering, vol.32, no.3, pp.468–478, 2020. doi: 10.1109/TKDE.2019.2891537
|
[22] |
K. Guo, Y. Hu, Z, Qian, et al., “Optimized graph convolution recurrent neural network for traffic prediction,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.2, pp.1138–1149, 2020. doi: 10.1109/TITS.2019.2963722
|
[23] |
S. Zhan, L.Yu, Z. Wang, et al., “Cell traffic prediction based on convolutional neural network for software-defined ultra-dense visible light communication networks,” Security and Communication Networks, vol.2021, DOI: 10.1155/2021/9223965, 2021.
|
[24] |
C. W. Huang, C. T. Chiang, and Q. Li, “A study of deep learning networks on mobile traffic forecasting,” 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, QC, Canada, pp.1–6, 2017.
|
[25] |
R. Huang, C. Huang, Y. Liu, G. Dai, et al., “LSGCN: Long short-term traffic prediction with graph convolutional networks,” in Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, pp.2355–2361, 2020.
|
[26] |
X. Yin, G. Wu, J, Wei, et al., “Deep learning on traffic prediction: methods, analysis, and future directions,” IEEE Transactions on Intelligent Transportation Systems, vol.23, no.6, pp.4927–4943, 2022. doi: 10.1109/TITS.2021.3054840
|
[27] |
C. Vinchoff, N. Chung, T. Gordan, et al., “Traffic prediction in optical networks using graph convolutional generative adversarial networks,” 2020 22nd International Conference on Transparent Optical Networks, Bari, Italy, pp.1–4, 2020.
|
[28] |
A. Boukerche and J. Wang, “Machine learning-based traffic prediction models for intelligent transportation systems,” Computer Networks, vol.181, article no.107530, 2020. doi: 10.1016/j.comnet.2020.107530
|
[29] |
X. Yin, G. Wu, J. Wei, et al., “Multi-stage attention spatial-temporal graph networks for traffic prediction,” Neurocomputing, vol.428, pp.42–53, 2021. doi: 10.1016/j.neucom.2020.11.038
|
[30] |
L. Zhao, Y. Song, C. Zhang, P. Wang, et al., “T-GCN: A temporal graph convolutional network for traffic prediction,” IEEE Transactions on Intelligent Transportation Systems, vol.21, no.9, pp.3848–3858, 2020. doi: 10.1109/TITS.2019.2935152
|
[31] |
M. Aibin, N. Chung, T. Gordan, et al., “On short-and long-term traffic prediction in optical networks using machine learning,” The 25th International Conference on Optical Network Design and Modelling, Gothenburg, Sweden, pp.1–6, 2021.
|
[32] |
L. Fang, X. Cheng, H. Wang, et al., “Mobile demand forecasting via deep graph-sequence spatiotemporal modeling in cellular networks,” IEEE Internet of Things Journal, vol.5, no.4, pp.3091–3101, 2018. doi: 10.1109/JIOT.2018.2832071
|
[33] |
Z. Wang, X. Su, and Z. Ding, “Long-term traffic prediction based on LSTM encoder-decoder architecture,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.10, pp.6561–6571, 2021. doi: 10.1109/TITS.2020.2995546
|
[34] |
M. Aibin, “Deep learning for cloud resources allocation: Long-short term memory in EONs,” The International Conference on Transparent Optical Networks, Angers, France, pp.1–4, 2019.
|
[35] |
F. Morales, M, Ruiz, L. Gifre, et al., “Virtual network topology adaptability based on data analytics for traffic prediction,” Journal of Optical Communications and Networking, vol.9, no.1, pp.A35–A45, 2017. doi: 10.1364/JOCN.9.000A35
|
[36] |
D. A. Tedjopurnomo, Z. Bao, B. Zheng, et al., “A survey on modern deep neural network for traffic prediction: trends, methods and challenges,” IEEE Transactions on Knowledge and Data Engineering, vol.34, no.4, pp.1544–1561, 2022. doi: 10.1109/TKDE.2020.3001195
|
[37] |
X. Shi, H. Qi, Y. Shen, et al., “A spatial-temporal attention approach for traffic prediction,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.8, pp.4909–4918, 2021. doi: 10.1109/TITS.2020.2983651
|
[38] |
Y. Zhu and S. Wang, “Joint traffic prediction and base station sleeping for energy saving in cellular networks,” IEEE International Conference on Communications, Montreal, QC, Canada, pp.1–6, 2021.
|
[39] |
A. M. Nagib, H. Abou-Zeid, H. S. Hassanein, et al., “Deep learning-based forecasting of cellular network utilization at millisecond resolutions,” IEEE International Conference on Communications, Montreal, QC, Canada, pp.1–6, 2021.
|
[40] |
T. Kuber, I. Seskar, and N. Mandayam, “Traffic prediction by augmenting cellular data with non-cellular attributes,” 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, pp.1–6, 2021.
|
[41] |
G. L. Santos, P. Rosati, T. Lynn, et al., “Predicting short-term mobile Internet traffic from Internet activity using recurrent neural networks,” International Journal of Network Management, vol.32, no.3, article no.e2191, 2022. doi: 10.1002/nem.2191
|
[42] |
T. H. H. Aldhyani, M. Alrasheedi, A. A. Alqarni, et al., “Intelligent hybrid model to enhance time series models for predicting network traffic,” IEEE Access, vol.8, pp.130431–130451, 2020. doi: 10.1109/ACCESS.2020.3009169
|
[43] |
A. Azari, P. Papapetrou, S. Denic, et al., “Cellular traffic prediction and classification: A comparative evaluation of LSTM and ARIMA,” International Conference on Discovery Science, Springer, Cham, pp.129–144, 2019.
|
[44] |
A. Azari, P. Papapetrou, S. Denic, et al., “User traffic prediction for proactive resource management: Learning-powered approaches,” 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, pp.1–6, 2019.
|
[45] |
Y. Zang, F. Ni, Z. Feng, et al, “Wavelet transform processing for cellular traffic prediction in machine learning networks,” in Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, China, pp.458–462, 2015.
|
[46] |
T. Li, J. Zhang, K. Bao, Y. Liang, et al., “AutoST: efficient neural architecture search for spatio-temporal prediction,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event CA USA, pp.794–802, 2020.
|
[47] |
J. Niemela, T. Isotalo, and J. Lempiainen, “Optimum antenna downtilt angles for macro-cellular WCDMA network,” EURASIP Journal on Wireless Communications and Networking, vol.2005, article no.610942, 2005. doi: 10.1155/WCN.2005.816
|
[48] |
J. Chen, H. Jiang, and M. Peng, “Adaptive configuration of antenna down tilt for optimizing coverages in IMT-Advanced systems,” in Proceedings of IET International Conference on Communication Technology and Application (ICCTA 2011), Beijing, China, pp.495–499, 2011.
|
[49] |
U. Turke and M. Koonert, “Advanced site configuration techniques for automatic UMTS radio network design,” in Proceedings of 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, pp.1960–1964, 2005.
|
[50] |
A. Awada, B. Wegmann, I. Viering, et al., “Optimizing the radio network parameters of the long term evolution system using Taguchi’s method,” IEEE Transactions on Vehicular Technology, vol.60, no.8, pp.3825–3839, 2011. doi: 10.1109/TVT.2011.2163326
|
[51] |
S. Berger, M. Soszka, A. Fehske, et al., “Joint throughput and coverage optimization under sparse system knowledge in LTE-A networks,” in Proceedings of 2013 International Conference on ICT Convergence (ICTC), Jeju, Korea (South), pp.105–111, 2013.
|
[52] |
V. Buenestado, M. Toril, S. Luna-Ramirez, et al., “Self-tuning of remote electrical tilts based on call traces for coverage and capacity optimization in LTE,” IEEE Transactions on Vehicular Technology, vol.66, no.5, pp.4315–4326, 2017. doi: 10.1109/TVT.2016.2605380
|
[53] |
W. An, Y. Liu, and W. Huangfu, “A fast coordinate descent algorithm improving both coverage and capacity in cellular networks,” in Proceedings of 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, pp.43–48, 2020.
|
[54] |
S. Berger, A. Fehske, P. Zanier, et al., “Online antenna tilt-based capacity and coverage optimization,” IEEE Wireless Communications Letters, vol.3, no.4, pp.437–440, 2014. doi: 10.1109/LWC.2014.2327228
|
[55] |
S. Berger, M. Simsek, A. Fehske, P. Zanier, et al., “Joint downlink and uplink tilt-based self-organization of coverage and capacity under sparse system knowledge,” IEEE Trans. Veh. Technol., vol.65, no.4, pp.2259–2273, 2016. doi: 10.1109/TVT.2015.2419079
|
[56] |
Y. Liu, W. Huangfu, H. Zhang, et al., “An effcient stochastic gradient descent algorithm to maximize the coverage of cellular networks,” IEEE Transactions on Wireless Communications, vol.18, no.7, pp.3424–3436, 2019. doi: 10.1109/TWC.2019.2914040
|
[57] |
H. Eckhardt, S. Klein, and M. Gruber, “Vertical antenna tilt optimization for LTE base stations,” 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, pp.1–5, 2011.
|
[58] |
Pablo A. Sanchez Ordonez, Salvador Luna-Ramirez, and Matias Toril, “A computationally efficient method for QoE-driven self-planning of antenna tilts in a LTE network,” IEEE Access, vol.8, pp.197005–197016, 2020. doi: 10.1109/ACCESS.2020.3033325
|
[59] |
A. Engels, M. Reyer, X. Xu, et al., “Autonomous self-optimization of coverage and capacity in LTE cellular networks,” IEEE Transactions on Vehicular Technology, vol.62, no.5, pp.1989–2004, 2013. doi: 10.1109/TVT.2013.2256441
|
[60] |
B. Partov, D. J. Leith, and R. Razavi, “Utility fair optimization of antenna tilt angles in LTE networks,” IEEE/ACM Transactions on Networking, vol.23, no.1, pp.175–185, 2015. doi: 10.1109/TNET.2013.2294965
|
[61] |
C. Dhahri and T. Ohtsuki, “Antenna parameters optimization in self-organizing networks: Multi-armed bandits with Pareto search,” IEEE 86th Vehicular Technology Conference (VTC Fall), Toronto, ON, Canada, pp.1–5, 2017.
|
[62] |
C. Shen, R. Zhou, C. Tekin, et al., “Generalized global bandit and its application in cellular coverage optimization,” IEEE Journal of Selected Topics in Signal Processing, vol.12, no.1, pp.218–232, 2018. doi: 10.1109/JSTSP.2018.2798164
|
[63] |
Z. Wang and C. Shen, “Small cell transmit power assignment based on correlated bandit learning,” IEEE Journal on Selected Areas in Communications, vol.35, no.5, pp.1030–1045, 2017. doi: 10.1109/JSAC.2017.2679660
|
[64] |
N. Dandanov, H. Al-Shatri, A. Klein, et al., “Dynamic self-optimization of the antenna tilt for best trade-off between coverage and capacity in mobile networks,” Wireless Personal Communications, vol.92, pp.251–278, 2017. doi: 10.1007/s11277-016-3849-9
|
[65] |
R. M. Dreifuerst, S. Daulton, Y. Qian, et al., “Optimizing coverage and capacity in cellular networks using machine learning,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, pp.8138–8142, 2021.
|
[66] |
Maxime Bouton, Hasan Farooq, Julien Forgeat, Shruti Bothe, Meral Shirazipour, and Per Karlsson, “Coordinated reinforcement learning for capacity optimization in mobile networks,” ArXiv e-Print, arXiv:2109.15175, 2012.
|
[67] |
N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource management in wireless networks via multi-agent deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol.20, no.6, pp.3507–3523, 2021. doi: 10.1109/TWC.2021.3051163
|
[68] |
F. Vannella, G. Iakovidis, E. A. Hakim, et al., ”Remote electrical tilt optimization via safe reinforcement learning,” 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, pp.1–7, 2021.
|
[69] |
R. Razavi, S. Klein, and H. Claussen, “A fuzzy reinforcement learning approach for self optimization of coverage in LTE networks,” Bell Labs Technical Journal, vol.15, no.3, pp.153–175, 2010. doi: 10.1002/bltj.20463
|
[70] |
R. Razavi, S. Klein, and H. Claussen, “Self-optimization of capacity and coverage in LTE networks using a fuzzy reinforcement learning approach,” in Proceedings of 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey, pp.1865–1870, 2010.
|
[71] |
F. Shaoshuai, H. Tian, and C. Sengul, “Self-optimization of coverage and capacity based on a fuzzy neural network with cooperative reinforcement learning,” EURASIP Journal on Wireless Communications and Networking, vol.2014, article no.57, 2014. doi: 10.1186/1687-1499-2014-57
|
[72] |
A. Thampi, D. Kaleshi, P. Randall, et al., “A sparse sampling algorithm for self-optimisation of coverage in LTE networks,” in Proceedings of 2012 International Symposium on Wireless Communication Systems, Paris, France, pp.909–913, 2012.
|
[73] |
Eren Balevi and Jeffrey G. Andrews, “Online antenna tuning in heterogeneous cellular networks with deep reinforcement learning,” IEEE Transactions on Cognitive Communications and Networking, vol.5, no.4, pp.1113–1124, 2019. doi: 10.1109/TCCN.2019.2933420
|
[74] |
S. Berger, A. Fehske, and G. Fettweis, “Force field based joint optimization of strictly monotonic KPIs in wireless networks,” 2012 IFIP Wireless Days, Dublin, Ireland, pp.1–6, 2012.
|
[75] |
W. Guo, S. Wang, Y. Wu, et al., “Spectral and energy-efficient antenna tilting in a hetnet using reinforcement learning,” in Proceedings of 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, pp.767–772, 2013.
|
[76] |
H. Zhang, J. Du, J. Cheng, et al., “Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: A non-cooperative game theoretic approach,” IEEE Transactions on Wireless Communications, vol.17, no.3, pp.1882–1892, 2018. doi: 10.1109/TWC.2017.2786255
|
[77] |
Y. Yoon and Y. -H. Kim, “An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks,” IEEE Transactions on Cybernetics, vol.23, no.5, pp.1473–1483, 2013. doi: 10.1109/TCYB.2013.2250955
|
[78] |
Y. Mengjun, F. Lei, L. Wenjing, et al., “Cell outage compensation based on CoMP and optimization of tilt,” The Journal of China Universities of Posts and Telecommunications, vol.22, no.5, pp.71–79, 2015. doi: 10.1016/S1005-8885(15)60683-5
|
[79] |
Y. Liu, W. Huangfu, H. Zhang, W. An, et al., “An efficient geometry-induced genetic algorithm for base station placement in cellular networks,” IEEE Access, vol.7, pp.108604–108616, 2019. doi: 10.1109/ACCESS.2019.2933284
|
[80] |
N. Lakshminarasimman, S. Baskar, A. Alphones, et al., “Evolutionary multiobjective optimization of cellular base station locations using modified NSGA-Ⅱ,” Wireless Networks, vol.17, no.3, pp.597–609, 2011. doi: 10.1007/s11276-010-0299-2
|
[81] |
J. Zhang, C. Sun, Y. Yi, et al., “A hybrid framework for capacity and coverage optimization in self-organizing LTE networks,” in Proceedings of 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, pp.2919–2923, 2013.
|
[82] |
M. Sousa, A. Martins, and P. Vieira, “Self-optimization of low coverage and high interference in real 3G/4G radio access networks,” ISEL Academic Journal of Electronics, Telecommunications and Computers, vol.3, no.1, article no.12, 2018. doi: 10.34629/ipl.isel.i-ETC.39
|
[83] |
L. Huang, Y. Zhou, J. Hu, et al., “Coverage optimization for femtocell clusters using modified particle swarm optimization,” in Proceedings of 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, pp.611–615, 2012.
|
[84] |
Y. Qin, W. Huangfu, H. Zhang, et al., “Accelerated coverage optimization with particle swarm in the quotient space characterizing antenna azimuths of cellular networks,” IEEE Access, vol.7, pp.86252–86264, 2019. doi: 10.1109/ACCESS.2019.2925099
|
[85] |
I. Siomina, P. Varbrand, and D. Yuan, “Automated optimization of service coverage and base station antenna configuration in UMTS networks,” IEEE Wireless Communications, vol.13, no.6, pp.16–25, 2006. doi: 10.1109/MWC.2006.275194
|
[86] |
S. Hurley, S. Allen, D. Ryan, et al., “Modelling and planning fixed wireless networks,” Wireless Netw., vol.16, no.3, pp.577–592, 2010. doi: 10.1007/s11276-008-0155-9
|
[87] |
W. Mai, H. -L. Liu, L. Chen, et al., “Multi-objective evolutionary algorithm for 4G base station planning,” in Proceedings of 2013 Ninth International Conference on Computational Intelligence and Security, Emeishan, China, pp.85–89, 2013.
|
[88] |
R. Han, C. Feng, H. Xia, Y. We, et al., “Coverage optimization for dense deployment small cell based on ant colony algorithm,” in Proceedings of 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, pp.1–5, 2014.
|
[89] |
W. Bo, S. Yu, Z. Lv, et al., “A novel self-optimizing load balancing method based on ant colony in LTE network,” in Proceedings of 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, pp.1–4, 2012.
|
[90] |
Z. -Q. Luo, W. -K. Ma, A. M. So, et al., “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol.27, no.3, pp.20–34, 2010. doi: 10.1109/MSP.2010.936019
|
[91] |
K. Shen and W. Yu, “Fractional programming for communication systems Part I: Power control and beamforming,” IEEE Transactions on Signal Processing, vol.66, no.10, pp.2616–2630, 2018. doi: 10.1109/TSP.2018.2812733
|
[92] |
K. Shen and W. Yu, “Fractional programming for communication systems Part II: Uplink scheduling via matching,” IEEE Transactions on Signal Processing, vol.66, no.10, pp.2631–2644, 2018. doi: 10.1109/TSP.2018.2812748
|
[93] |
Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Transactions on Wireless Communications, vol.18, no.11, pp.5394–5409, 2019. doi: 10.1109/TWC.2019.2936025
|
[94] |
G. Zhou, C. Pan, H. Ren, et al., “Robust beamforming design for intelligent reflecting surface aided MISO communication systems,” IEEE Wireless Communications Letters, vol.9, no.10, pp.1658–1662, 2020. doi: 10.1109/LWC.2020.3000490
|
[95] |
B. Zheng, C. You, and R. Zhang, “Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design,” IEEE Transactions on Wireless Communications, vol.20, no.7, pp.4513–4526, 2021. doi: 10.1109/TWC.2021.3059945
|
[96] |
H. Xie, J. Xu, and Y. -F. Liu, “Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming,” IEEE Transactions on Wireless Communications, vol.20, no.2, pp.1379–1393, 2021. doi: 10.1109/TWC.2020.3033332
|
[97] |
S. Huang, Y. Ye, M. Xiao, et al., “Decentralized beamforming design for intelligent reflecting surface-enhanced cell-free networks,” IEEE Wireless Communications Letters, vol.10, no.3, pp.673–677, 2021. doi: 10.1109/LWC.2020.3045884
|
[98] |
W. Ni, X. Liu, Y. Liu, et al., “Resource allocation for multi-cell IRS-aided NOMA networks,” IEEE Transactions on Wireless Communications, vol.20, no.7, pp.4253–4268, 2021. doi: 10.1109/TWC.2021.3057232
|
[99] |
M. Zeng, X. Li, G. Li, et al., “Sum rate maximization for IRS-assisted uplink NOMA,” IEEE Communications Letters, vol.25, no.1, pp.234–238, 2021. doi: 10.1109/LCOMM.2020.3025978
|
[100] |
Z. Zhang, L. Dai, X. Chen, et al., “Active RIS vs. passive RIS: Which will prevail in 6G?,” IEEE Transactions on Communications, Early Access, DOI: 10.1109/TCOMM.2022.3231893, 2021.
|
[101] |
Y. Cao, T. Lv, and W. Ni, “Intelligent reflecting surface aided multi-user mmWave communications for coverage enhancement,” 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, pp.1–6, 2020.
|
[102] |
J. Hu, Y. -C. Liang, and Y. Pei, “Reconfigurable intelligent surface enhanced multi-user MISO symbiotic radio system,” IEEE Transactions on Communications, vol.69, no.4, pp.2359–2371, 2021. doi: 10.1109/TCOMM.2020.3047444
|
[103] |
J. Zhu, Y. Huang, J. Wang, et al., “Power efficient IRS-assisted NOMA,” IEEE Transactions on Communications, vol.69, no.2, pp.900–913, 2021. doi: 10.1109/TCOMM.2020.3029617
|
[104] |
Z. Zhang and L. Dai, “A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network,” IEEE Transactions on Signal Processing, vol.69, pp.4085–4101, 2021. doi: 10.1109/TSP.2021.3088755
|
[105] |
Y. Cao, T. Lv, Z. Lin, et al., “Delay-constrained joint power control, user detection and passive beamforming in intelligent reflecting surface-assisted uplink mmWave system,” IEEE Transactions on Cognitive Communications and Networking, vol.7, no.2, pp.482–495, 2021. doi: 10.1109/TCCN.2021.3064973
|
[106] |
K. Feng, X. Li, Y. Han, et al., “Physical layer security enhancement exploiting intelligent reflecting surface,” IEEE Communications Letters, vol.25, no.3, pp.734–738, 2021. doi: 10.1109/LCOMM.2020.3042344
|
[107] |
T. Shafique, H. Tabassum, and E. Hossain, “Optimization of wireless relaying with flexible UAV-borne reflecting surfaces,” IEEE Transactions on Communications, vol.69, no.1, pp.309–325, 2021. doi: 10.1109/TCOMM.2020.3032700
|
[108] |
X. Mu, Y. Liu, L. Guo, et al., “Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization,” IEEE Transactions on Wireless Communications, vol.19, no.10, pp.6884–6898, 2020. doi: 10.1109/TWC.2020.3006915
|
[109] |
M. -M. Zhao, A. Liu, Y. Wan, et al., “Two-timescale beamforming optimization for intelligent reflecting surface aided multiuser communication with QoS constraints,” IEEE Transactions on Wireless Communications, vol.20, no.9, pp.6179–6194, 2021. doi: 10.1109/TWC.2021.3072382
|
[110] |
B. Ning, Z. Chen, W. Chen, et al., “Beamforming optimization for intelligent reflecting surface assisted MIMO: A sum-path-gain maximization approach,” IEEE Wireless Communications Letters, vol.9, no.7, pp.1105–1109, 2020. doi: 10.1109/LWC.2020.2982140
|
[111] |
H. Shen, W. Xu, S. Gong, et al., “Beamforming optimization for IRS-aided communications with transceiver hardware impairments,” IEEE Transactions on Communications, vol.69, no.2, pp.1214–1227, 2021. doi: 10.1109/TCOMM.2020.3033575
|
[112] |
C. Pan, H. Ren, K. Wang, et al., “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Transactions on Wireless Communications, vol.19, no.8, pp.5218–5233, 2020. doi: 10.1109/TWC.2020.2990766
|
[113] |
X. Yu, D. Xu, Y. Sun, et al., “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE Journal on Selected Areas in Communications, vol.38, no.11, pp.2637–2652, 2020. doi: 10.1109/JSAC.2020.3007043
|
[114] |
V. Arun and H. Balakrishnan, “RFocus: Beamforming using thousands of passive antennas,” in Proceedings of the 17th Usenix Conference on Networked Systems Design and Implementation, Santa Clara, CA, USA, pp.1047–1061, 2020.
|
[115] |
S. Ren, K. Shen, Y. Zhang, X. Li, X. Chen, and Z.-Q. Luo, “Configuring intelligent reflecting surface with performance guarantees: Blind beamforming,” Available at: https://kaimingshen.github.io/doc/BlindBeamforming.pdf, 2021.
|
[116] |
X. Pei, H. Yin, L. Tan, et al., “RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Transactions on Communications, vol.69, no.12, pp.8627–8640, 2021. doi: 10.1109/TCOMM.2021.3116151
|
[117] |
N. M. Tran, M. M. Amri, D. S. Kang, et al., “Demo: Demonstration of reconfigurable metasurface for wireless communications,” 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Korea (South), pp.1–2, 2020.
|
[118] |
D. Kitayama, Y. Hama, K. Miyachi, and Y. Kishiyama, “Research of transparent RIS technology toward 5G evolution & 6G,” NTT Technical Review, vol.19, no.11, pp.26–34, 2021. doi: 10.53829/ntr202111fa2
|
[119] |
P. Staat, S. Mulzer, S. Roth, et al., “IRShield: A countermeasure against adversarial physical-layer wireless sensing,” arXiv preprint, arXiv: 2112.01967, 2021.
|
[120] |
W. Cai, M. Li, and Q. Liu, “Practical modeling and beamforming for intelligent reflecting surface aided wideband systems,” IEEE Communications Letters, vol.24, no.7, pp.1568–1571, 2020. doi: 10.1109/LCOMM.2020.2987322
|
[121] |
X. Yu, D. Xu, and R. Schober, “Optimal beamforming for MISO communications via intelligent reflecting surfaces,” 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, pp.1–5, 2020.
|
[122] |
B. Di, H. Zhang, L. Song, et al., “Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts,” IEEE Journal on Selected Areas in Communications, vol.38, no.8, pp.1809–1822, 2020. doi: 10.1109/JSAC.2020.3000813
|
[123] |
Y. Zhang, K. Shen, S. Ren, et al., “Configuring intelligent reflecting surface with performance guarantees: Optimal beamforming,” IEEE Journal of Selected Topics in Signal Processing, vol.16, no.5, pp.967–979, 2022. doi: 10.1109/JSTSP.2022.3176479
|
[124] |
J. Qiao and M. -S. Alouini, “Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems,” IEEE Wireless Communications Letters, vol.9, no.10, pp.1743–1747, 2020. doi: 10.1109/LWC.2020.3003400
|
[125] |
C. You, B. Zheng, and R. Zhang, “Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement,” IEEE Journal on Selected Areas in Communications, vol.38, no.11, pp.2604–2620, 2020. doi: 10.1109/JSAC.2020.3007056
|
[126] |
B. Zheng, Q. Wu, and R. Zhang, “Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?,” IEEE Communications Letters, vol.24, no.4, pp.753–757, 2020. doi: 10.1109/LCOMM.2020.2969870
|
[127] |
M. -M. Zhao, A. Liu, and R. Zhang, “Outage-constrained robust beamforming for intelligent reflecting surface aided wireless communication,” IEEE Transactions on Signal Processing, vol.69, pp.1301–1316, 2021. doi: 10.1109/TSP.2021.3056899
|
[128] |
D. Li, “Fairness-aware multiuser scheduling for finite-resolution intelligent reflecting surface-assisted communication,” IEEE Communications Letters, vol.25, no.7, pp.2395–2399, 2021. doi: 10.1109/LCOMM.2021.3073353
|
[129] |
Z. Feng, B. Clerckx, and Y. Zhao, “Waveform and beamforming design for intelligent reflecting surface aided wireless power transfer: Single-user and multi-user solutions,” IEEE Transactions on Wireless Communications, vol.21, no.7, pp.5346–5361, 2022. doi: 10.1109/TWC.2021.3139440
|
[130] |
Q. Wu and R. Zhang, “Beamforming optimization for wireless networks aided by intelligent reflecting surface with discrete phase shifts,” IEEE Transactions on Communications, vol.68, no.3, pp.1838–1851, 2020. doi: 10.1109/TCOMM.2019.2958916
|
[131] |
A. Al-Hilo, M. Samir, M. Assi, et al., “Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming,” IEEE Transactions on Vehicular Technology, vol.71, no.3, pp.2333–2345, 2022. doi: 10.1109/TVT.2022.3141935
|
[132] |
M.-M. Zhao, Q. Wu, M.-J. Zhao, et al., “Exploiting amplitude control in intelligent reflecting surface aided wireless communication with imperfect CSI,” IEEE Transactions on Communications, vol.69, no.6, pp.4216–4231, 2021. doi: 10.1109/TCOMM.2021.3064959
|
[133] |
L. You, J. Xiong, D. W. K. Ng, et al., “Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission,” IEEE Transactions on Signal Processing, vol.69, pp.1407–1421, 2021. doi: 10.1109/TSP.2020.3047474
|
[134] |
W. Zhang, J. Xu, W. Xu, et al., “Cascaded channel estimation for IRS-assisted mmWave multi-antenna with quantized beamforming,” IEEE Communications Letters, vol.25, no.2, pp.593–597, 2021. doi: 10.1109/LCOMM.2020.3028878
|
[135] |
H. Wang, N. Shlezinger, Y. C. Eldar, et al., “Dynamic metasurface antennas for MIMO-OFDM receivers with bit-limited ADCs,” IEEE Transactions on Communications, vol.69, no.4, pp.2643–2659, 2021. doi: 10.1109/TCOMM.2020.3040761
|
[136] |
S. Abeywickrama, R. Zhang, Q. Wu, et al., “Intelligentreflecting surface: Practical phase shift model and beamforming optimization,” IEEE Transactions on Communications, vol.68, no.9, pp.5849–5863, 2020. doi: 10.1109/TCOMM.2020.3001125
|
[137] |
C. Huang, A. Zappone, G. C. Alexandropoulos, et al., “Reconfigurable intelligent surface for energy efficiency in wireless communication,” IEEE Transactions on Wireless Communications, vol.18, no.8, pp.4157–4170, 2019. doi: 10.1109/TWC.2019.2922609
|
[138] |
J. Gao, C. Zhong, X. Chen, et al., “Unsupervised learning for passive beamforming,” IEEE Communications Letters, vol.24, no.5, pp.1052–1056, 2020. doi: 10.1109/LCOMM.2020.2965532
|
[139] |
C. Liu, X. Liu, D. W. K. Ng, et al., “Deep residual network empowered channel estimation for IRS-assisted multi-user communication systems,” IEEE International Conference on Communications, Montreal, QC, Canada, pp.1–7, 2021.
|
[140] |
G. T. de Araújo, A. L. F. de Almeida, and R. Boyer, “Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach,” IEEE Journal of Selected Topics in Signal Processing, vol.15, no.3, pp.789–801, 2021. doi: 10.1109/JSTSP.2021.3061274
|
[141] |
D. Mishra and H. Johansson, “Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer,” in Proc. of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, pp.4659–4663, 2019.
|