Citation: | NING Zihao, LI Mengmeng, DING Dazhi, et al. “Characteristic Mode Design of Dual-Band Reconfigurable Frequency Selective Surface”. Chinese Journal of Electronics, vol. 31 no. 6. doi: 10.1049/cje.2022.00.242 |
[1] |
B. A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, USA, 2000.
|
[2] |
Q. Chen, S. Yang, J. Bai, et al., “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antennas Propag., vol.65, no.9, pp.4897–4902, 2017. doi: 10.1109/TAP.2017.2722875
|
[3] |
I. S. Syed, Y. Ranga, L. Matekovits, et al., “A single-layer frequency-selective surface for ultrawideband electromagnetic shielding,” IEEE Trans. Electromagn. Compat., vol.56, no.6, pp.1404–1411, 2014. doi: 10.1109/TEMC.2014.2316288
|
[4] |
Y. He, J. Jiang, M. Chen, et al., “Design of an adjustable polarization-independent and wideband electromagnetic absorber,” J. Appl. Phys., vol.119, no.10, article no.105103, 2016. doi: 10.1063/1.4943593
|
[5] |
P. Kong, X. Yu, Z. Liu, et al., “A novel tunable frequency selective surface absorber with dual-DOF for broadband applications,” Opt. Exp., vol.22, no.24, pp.30217–30224, 2014. doi: 10.1364/OE.22.030217
|
[6] |
S. H. Zhou, X. Y. Fang, M. Li, et al., “S/X dual-band real-time modulated frequency selective surface based absorber,” Acta Phys. Sin., vol.69, article no.204101, 2020. doi: 10.7498/aps.69.20200606
|
[7] |
T. Li, J. Sun, H. Meng, et al., “Characteristic mode inspired dual-polarized double-layer metasurface lens,” IEEE Trans. Antennas Propag., vol.69, no.6, pp.3144–3154, 2021. doi: 10.1109/TAP.2020.3046423
|
[8] |
H. Chou, G. Ke, C. Lin, et al., “Reconfigurable design of mmWave liquid-crystal frequency selective surface at ka-band,” IEEE Trans. Electromagn. Compat., vol.64, no.5, pp.1734–1741, 2022. doi: 10.1109/TEMC.2022.3193995
|
[9] |
J. A. Bossard, X. Liang, L. Li, et al., “Tunable frequency selective surfaces and negative-zero-positive index metamaterials based on liquid crystals,” IEEE Trans. Antennas Propag., vol.56, no.5, pp.1308–1320, 2008. doi: 10.1109/TAP.2008.922174
|
[10] |
M. Safari, C. Shafai, and L. Shafai, “X-band tunable frequency selective surface using MEMS capacitive loads,” IEEE Trans. Antennas Propag., vol.63, no.3, pp.1014–1021, 2015. doi: 10.1109/TAP.2014.2386304
|
[11] |
B. Schoenlinner, A. Abbaspour-Tamijani, L. C. Kempel , et al., “Switchable low-loss RF MEMS Ka-band frequency-selective surface,” IEEE Trans. Microw. Theory Techn., vol.52, no.11, pp.2474–2481, 2004. doi: 10.1109/TMTT.2004.837148
|
[12] |
X. Li, L. Lin, L. -S. Wu, et al., “A bandpass graphene frequency selective surface with tunable polarization rotation for THz applications,” IEEE Trans. Antennas Propag., vol.65, no.2, pp.662–672, 2017. doi: 10.1109/TAP.2016.2633163
|
[13] |
M. -L. Zhai and D. -M. Li, “Tunable hybrid metal? graphene frequency selective surfaces based on split-ring resonators by leapfrog ADI-FDTD method,” Micro Nano Lett., vol.13, no.9, pp.1276–1279, 2018. doi: 10.1049/mnl.2017.0857
|
[14] |
D. -W. Wang, W. -S. Zhao, H. Xie, et al., “Tunable THz multiband frequency-selective surface based on hybrid metal? graphene structures,” IEEE Trans. Nanotechnol., vol.16, no.6, pp.1132–1137, 2017. doi: 10.1109/TNANO.2017.2749269
|
[15] |
D. F. Mamedes, A. G. Neto, J. C. ESilva, et al., “Design of reconfigurable frequency-selective surfaces including the PIN diode threshold region,” IET Microw. Antennas Propag., vol.12, pp.1483–1486, 2018. doi: 10.1049/iet-map.2017.0761
|
[16] |
H. Li, Q. Cao, L. Liu, et al., “An improved multifunctional active frequency selective surface,” IEEE Trans. Antennas Propag., vol.66, no.4, pp.1854–1862, 2018. doi: 10.1109/TAP.2018.2800727
|
[17] |
H. Fabian-Gongora, A. E. Martynyuk, J. Rodriguez-Cuevas, et al., “Active dual-band frequency selective surfaces with close band spacing based on switchable ring slots,” IEEE Microw. Wireless Compon. Lett., vol.25, no.9, pp.606–608, 2015. doi: 10.1109/LMWC.2015.2451358
|
[18] |
S. Ghosh and K. V. Srivastava, “Broadband polarization-insensitive tunable frequency selective surface for wideband shielding,” IEEE Trans. Electromagn. Compat., vol.60, no.1, pp.166–172, 2018. doi: 10.1109/TEMC.2017.2706359
|
[19] |
A. Ebrahimi, Z. Shen, W. Withayachumnankul, et al., “Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network,” IEEE Trans. Antennas Propag., vol.64, no.5, pp.1672–1680, 2016. doi: 10.1109/TAP.2016.2537378
|
[20] |
D. Ferreira, R. F. Caldeirinha, I. Cuinas, et al., “Tunable square slot FSS EC modelling and optimization,” IEEE Trans. Antennas Propag., vol.11, no.5, pp.737–742, 2017. doi: 10.1049/iet-map.2016.0540
|
[21] |
A. Vallecchi, R. J. Langley, and A. G. Schuchinsky, “Bistate frequency selective surfaces made of intertwined slot arrays,” IEEE Trans. Antennas Propag., vol.65, no.6, pp.3093–3101, 2017. doi: 10.1109/TAP.2017.2689025
|
[22] |
C. Yang, H. Li, Q. Cao, et al., “Switchable electromagnetic shield by active frequency selective surface for LTE-2.1 GHz,” Microw. Opt. Technol. Lett., vol.58, no.3, pp.535–540, 2016. doi: 10.1002/mop.29617
|
[23] |
B. Liang, B. Sanz-Izquierdo, E. A. Parker, et al., “Cylindrical slot FSS configuration for beam-switching applications,” IEEE Trans. Antennas Propag., vol.63, no.1, pp.166–173, 2015. doi: 10.1109/TAP.2014.2367534
|
[24] |
S. C. Bakshi, D. Mitra, and S. Ghosh, “A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band,” IEEE Antennas Wireless Propag. Lett., vol.18, no.1, pp.29–33, 2019. doi: 10.1109/LAWP.2018.2878858
|
[25] |
G. Shah, Q. Cao, Z. Ul Abidin, et al., “A 4-Bit multistate frequency-selective surface with dual-band multifunction response,” IEEE Antennas Wireless Propag. Lett., vol.20, no.10, pp.1844–1848, 2021. doi: 10.1109/LAWP.2021.3076862
|
[26] |
Y. Chen and C. -F. Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, John Wiley & Sons, Hoboken, USA, 2015.
|
[27] |
S. Huang, C. -F. Wang, J. Pan, et al., “Accurate sub-structure characteristic mode analysis of dielectric resonator antennas with finite ground plan,” IEEE Trans. Antennas Propag., vol.69, no.10, pp.6930–6935, 2021. doi: 10.1109/TAP.2021.3070648
|
[28] |
Y. Chen and C. -F. Wang, “HF band shipboard antenna design using characteristic modes,” IEEE Trans. Antennas Propag., vol.63, no.3, pp.1004–1013, 2015. doi: 10.1109/TAP.2015.2391288
|
[29] |
Q. Wu, “Characteristic mode assisted design of dielectric resonator antennas with feedings,” IEEE Trans. Antennas Propag., vol.67, no.8, pp.5294–5304, 2019. doi: 10.1109/TAP.2019.2916763
|
[30] |
Q. Guo, J. Su, Z. Li, et al., “Miniaturized-element frequency-selective rasorber design using characteristic modes analysis,” IEEE Trans. Antennas Propag., vol.68, no.9, pp.6683–6694, 2020. doi: 10.1109/TAP.2020.2986640
|
[31] |
D. Zha, Z. Cao, R. Li, et al., “A physical insight into reconfigurable frequency selective surface using characteristic mode analysis,” IEEE Antennas Wireless Propag. Lett., vol.20, no.10, pp.1863–1867, 2021. doi: 10.1109/LAWP.2021.3096324
|
[32] |
Skyworks, “SMP1320 Series: Low resistance, low capacitance, plastic packaged PIN diodes,” available at https://www.skyworksinc.com/Products/Diodes/SMP1320-Series/SMP1320-Series-200047S.pdf, 2017-5-17.
|