Citation:  LI Hongliang, DAI Feng, ZHAO Qiang, et al., “Nonuniform Compressive Sensing Imaging Based on Image Saliency,” Chinese Journal of Electronics, vol. 32, no. 1, pp. 159165, 2023, doi: 10.23919/cje.2019.00.028 
[1] 
E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol.52, no.2, pp.489–509, 2006. doi: 10.1109/TIT.2005.862083

[2] 
E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine, vol.25, no.2, pp.21–30, 2008. doi: 10.1109/MSP.2007.914731

[3] 
A. K. Moorthy and A. C. Bovik, “Visual importance pooling for image quality assessment,” IEEE J. Sel. Top. Sign. Proces., vol.3, no.2, pp.193–201, 2009. doi: 10.1109/JSTSP.2009.2015374

[4] 
Y. Yu, B. Wang, and L. Zhang, “Saliencybased compressive sampling for image signals,” IEEE Signal Processing Letters, vol.17, no.11, pp.973–976, 2010. doi: 10.1109/LSP.2010.2080673

[5] 
X. Zhang, J. Chen, H. Meng, and X. Tian, “Selfadaptive structured image sensing,” Optical Engineering, vol.51, no.12, article no.127001, 2012. doi: 10.1117/1.OE.51.12.127001

[6] 
R. Li, X. Duan, X. Guo, W. He, and Y. Lv, “Adaptive compressive sensing of images using spatial entropy,” Computational Intelligence and Neuroscience, vol.2017, pp.1–9, 2017.

[7] 
B. Zhang, Y. Liu, X. Jing, et al., “Interweaving permutation meets block compressed sensing,” Chinese Journal of Electronics, vol.27, no.5, pp.1056–1062, 2018. doi: 10.1049/cje.2017.04.001

[8] 
Z. Li, J. Xie, G. Zhu, et al., “Blockbased projection matrix design for compressed sensing,” Chinese Journal of Electronics, vol.25, no.3, pp.551–555, 2016. doi: 10.1049/cje.2016.05.022

[9] 
M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in Signal Processing, vol.1, no.4, pp.586–597, 2007. doi: 10.1109/JSTSP.2007.910281

[10] 
I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol.57, no.11, pp.1413–1457, 2004. doi: 10.1002/cpa.20042

[11] 
L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena, vol.60, no.14, pp.259–268, 1992. doi: 10.1016/01672789(92)90242F

[12] 
L. Jia, “Joint bayesian and greedy recovery for compressive sensing,” Chinese Journal of Electronics, vol.29, no.5, pp.945–951, 2020. doi: 10.1049/cje.2020.08.010

[13] 
N. He, R. Wang, J. Lyu, and J. Xue, “Lowrank combined adaptive sparsifying transform for blind compressed sensing image recovery,” Chinese Journal of Electronics, vol.29, no.4, pp.678–685, 2020. doi: 10.1049/cje.2020.05.014

[14] 
C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented lagrangian method with applications to total variation minimization,” Computational Optimization and Applications, vol.56, no.3, pp.507–530, 2013. doi: 10.1007/s1058901395761

[15] 
C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,” IEEE Transactions on Information Theory, vol.62, no.9, pp.5117–5144, 2016. doi: 10.1109/TIT.2016.2556683

[16] 
C. Metzler, A. Mousavi, and R. Baraniuk, “Learned DAMP: Principled neural network based compressive image recovery,” in Proc. of the 31st Int. Conf. on Neural Information Processing Systems, Long Beach, CA, USA, pp.1770–1781, 2017.

[17] 
M. F. Duarte, M. A. Davenport, D. Takhar, et al., “Singlepixel imaging via compressive sampling,” IEEE Signal Processing Magazine, vol.25, no.2, pp.83–91, 2008. doi: 10.1109/MSP.2007.914730

[18] 
G. Huang, H. Jiang, K. Matthews, et al., “Lensless imaging by compressive sensing,” in Proceedings of 2013 20th IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Australia, pp.2101–2105, 2013.

[19] 
Z. Zhang, X. Ma, and J. Zhong, “Singlepixel imaging by means of fourier spectrum acquisition,” Nature Communications, vol.6, no.1, article no.6225, 2015. doi: 10.1038/ncomms7225

[20] 
C. Yang, L. Zhang, H. Lu, et al., “Saliency detection via graphbased manifold ranking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, pp.3166–3173, 2013.

[21] 
D. Gao, S. Han, and N. Vasconcelos, “Discriminant saliency, the detection of suspicious coincidences. and applications to visual recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.31, no.6, pp.989–1005, 2009. doi: 10.1109/TPAMI.2009.27

[22] 
L. Galteri, L. Seidenari, M. Bertini, et al., “Deep generative adversarial compression artifact removal,” in Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV),Venice, Italy, pp.4836–4845, 2017.

[23] 
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp.770–778, 2016.

[24] 
O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recognition challenge,” International Journal of Computer Vision, vol.115, no.3, pp.211–252, 2015. doi: 10.1007/s112630150816y

[25] 
J. Shi, Q. Yan, L. Xu, et al., “Hierarchical image saliency detection on extended CSSD,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.38, no.4, pp.717–729, 2016. doi: 10.1109/TPAMI.2015.2465960
