Citation: | GU Jun, ZOU Quanyi, DENG Changhui, WANG Xiaojun. A Novel Robust Online Extreme Learning Machine for the Non-Gaussian Noise[J]. Chinese Journal of Electronics, 2023, 32(1): 130-139. doi: 10.23919/cje.2021.00.122 |
[1] |
B. Zou, X. Shan, C. Zhu, et al., “Deep learning and its application in diabetic retinopathy screening,” Chinese Journal of Electronics, vol.29, no.6, pp.992–1000, 2020. doi: 10.1049/cje.2020.09.001
|
[2] |
Y. Yang, Q. M. J. Wu, X. Feng, et al., “Recomputation of the dense layers for performance improvement of DCNN,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.42, no.11, pp.2912–2925, 2020. doi: 10.1109/TPAMI.2019.2917685
|
[3] |
X. Yuan, P. He, Q. Zhu, et al., “Adversarial examples: Attacks and defenses for deep learning,” IEEE Transactions on Neural Networks and Learning Systems, vol.30, no.9, pp.2805–2824, 2019. doi: 10.1109/TNNLS.2018.2886017
|
[4] |
G. Cai, G. Lyu, Y. Lin, et al., “Multi-level deep correlative networks for multi-modal sentiment analysis,” Chinese Journal of Electronics, vol.29, no.6, pp.1025–1038, 2020. doi: 10.1049/cje.2020.09.003
|
[5] |
Y. Zhang, K. Liu, Q. Zhang, et al., “A combined-convolutional neural network for Chinese news text classification,” CTA Electonica Sinica, vol.49, no.6, pp.1059–1067, 2021.
|
[6] |
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol.70, no.1-3, pp.489–501, 2006. doi: 10.1016/j.neucom.2005.12.126
|
[7] |
G. An, Z. Jiang, X. Cao, et al., “Short-term wind power prediction based on particle swarm optimization-extreme learning machine model combined with Adaboost algorithm,” IEEE Access, vol.9, pp.94040–94052, 2021. doi: 10.1109/ACCESS.2021.3093646
|
[8] |
J. Zhao, W. Wang, Q. Sun, et al., “CSELM-QE: A composite semi-supervised extreme learning machine with unlabeled RSS quality estimation for radio map construction,” Chinese Journal of Electronics, vol.29, no.6, pp.1016–1024, 2020. doi: 10.1049/cje.2020.09.002
|
[9] |
F. Golestaneh, P. Pierre, and H. B. Gooi, “Very short-term nonparametric probabilistic forecasting of renewable energy generation-with application to solar energy,” IEEE Transactions on Power Systems, vol.31, no.5, pp.3850–3863, 2016. doi: 10.1109/TPWRS.2015.2502423
|
[10] |
N. Liang, G. B. Huang, P. Saratchandran, et al., “A fast and accurate online sequential learning algorithm for feed-forward networks,” IEEE Transactions on Neural Networks, vol.17, no.6, pp.1411–1423, 2006. doi: 10.1109/TNN.2006.880583
|
[11] |
J. Zhao, Z. Wang, and D. S. Park, “Online sequential extreme learning machine with forgetting mechanism,” Neurocomputing, vol.87, pp.79–89, 2012. doi: 10.1016/j.neucom.2012.02.003
|
[12] |
Q. Y. Zou, X. J. Wang, C. J. Zhou, et al., “The memory degradation based online sequential extreme learning machine,” Neurocomputing, vol.275, pp.2864–2879, 2018. doi: 10.1016/j.neucom.2017.11.030
|
[13] |
J. Yang, F. Ye, H. J. Rong, et al., “Recursive least mean p-power extreme learning machine,” Neural Networks, vol.91, pp.22–33, 2017. doi: 10.1016/j.neunet.2017.04.001
|
[14] |
S. M. Jung and P. G. Park, “Stabilization of a bias-compensated normalized least mean square algorithm for noisy inputs,” IEEE Transactions on Signal Processing, vol.65, no.11, pp.2949–2961, 2017. doi: 10.1109/TSP.2017.2675865
|
[15] |
B. Chen, L. Xing, Z. Wu, et al., “Smoothed least mean p-power error criterion for adaptive filtering,” Digital Signal Processing, vol.40, pp.154–163, 2015. doi: 10.1016/j.dsp.2015.02.009
|
[16] |
S. C. Pei and C. C. Tseng, “Least mean p-power error criterion for adaptive FIR flter,” IEEE Journal on Selected Areas in Communications, vol.12, no.9, pp.1540–1547, 1994. doi: 10.1109/49.339922
|
[17] |
H. Sadreazami, M. O. Ahmad, and M. N. S. Swamy, “Despeckling of synthetic aperture radar images in the contourlet domain using the alpha-stable distribution,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, pp.121–124, 2015.
|
[18] |
Y. Chen, “Suboptimum detectors for AF relaying with gaussian noise and interference,” IEEE Transactions on Vehicular Technology, vol.64, no.10, pp.4833–4839, 2015. doi: 10.1109/TVT.2014.2372040
|
[19] |
J. IIow, D. Hatzinakos, and A. N. Venetsanopoulos, “Performance of FHSS radio networks with interference modeled as a mixture of Gaussian and alpha-stable noise,” IEEE Transactions on Communications, vol.46, no.4, pp.509–520, 1998. doi: 10.1109/26.664307
|
[20] |
R. D. Pierce, “Application of the positive alpha-stable distribution,” in Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics (HOST), Banff, AB, Canada, pp.420–424, 1997.
|