Developer Cooperation Relationship and Attribute Similarity Based Community Detection in Software Ecosystem
-
Graphical Abstract
-
Abstract
A software ecosystem (SECO) can be described as a special complex network. Previous complex networks in an SECO have limitations in accurately reflecting the similarity between each pair of nodes. The community structure is critical towards understanding the network topology and function. Many scholars tend to adopt evolutionary optimization methods for community detection. The information adopted in previous optimization models for community detection is incomprehensive and cannot be directly applied to the problem of community detection in an SECO. Based on this, a complex network in SECOs is first built. In the network, the cooperation intensity between developers is accurately calculated, and the attribute contained by each developer is considered. A multi-objective optimization model is formulated. A community detection algorithm based on NSGA-II is employed to solve the above model. Experimental results demonstrate that the proposed method of calculating the developer cooperation intensity and our model are advantageous.
-
-