Citation: | FAN Jiande, XIE Weixin, LIU Zongxiang. “A Low Complexity Distributed Multitarget Detection and Tracking Algorithm”. Chinese Journal of Electronics, vol. 32 no. 3. doi: 10.23919/cje.2021.00.282 |
[1] |
B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol.54, no.11, pp.4091–4104, 2006. doi: 10.1109/TSP.2006.881190
|
[2] |
B. T. Vo, B. N. Vo, and A. Cantoni, “Analytic implementations of the cardinalized probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol.55, no.7, pp.3553–3567, 2007. doi: 10.1109/TSP.2007.894241
|
[3] |
S. Reuter, B. T. Vo, and B. N. Vo, et al., “The labeled multi-Bernoulli filter,” IEEE Transactions on Signal Processing, vol.62, no.12, pp.3246–3260, 2014. doi: 10.1109/TSP.2014.2323064
|
[4] |
C. Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” Proceedings of the IEEE, vol.91, no.8, pp.1247–1256, 2003. doi: 10.1109/JPROC.2003.814918
|
[5] |
R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol.95, no.1, pp.215–233, 2007. doi: 10.1109/JPROC.2006.887293
|
[6] |
A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol.102, no.4, pp.460–497, 2014. doi: 10.1109/JPROC.2014.2306253
|
[7] |
R. Mahler, “Approximate multisensor CPHD and PHD filters,” in Proceedings of the 2010 13th International Conference on Information Fusion, Edinburgh, UK, pp.1–8, 2010.
|
[8] |
B. Khaleghi, A. Khamis, F. O. Karray, et al., “Multisensor data fusion: a review of the state-of-the-art,” Information Fusion, vol.14, no.1, pp.28–44, 2013. doi: 10.1016/j.inffus.2011.08.001
|
[9] |
M. Üney, D. E. Clark, and J. J. Simon, “Distributed fusion of PHD filters via exponential mixture densities,” IEEE Journal of Selected Topics in Signal Processing, vol.7, no.3, pp.521–531, 2013. doi: 10.1109/JSTSP.2013.2257162
|
[10] |
G. Battistelli, L. Chisci, C. Fantacci, et al., “Consensus CPHD filter for distributed multitarget tracking,” IEEE Journal of Selected Topics in Signal Processing, vol.7, no.3, pp.508–520, 2013. doi: 10.1109/JSTSP.2013.2250911
|
[11] |
C. Fritsche, U. Orguner, E. Özkan, et al., “On the Cramér-Rao lower bound under model mismatch,” in Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, QLD, Australia, pp. 3986–3990, 2015.
|
[12] |
F. Meyer, P. Braca, F. Hlawatsch, et al., “Scalable adaptive multitarget tracking using multiple sensors,” in Proceedings of 2016 IEEE Globecom Workshops, Washington, DC, USA, pp. 1–6, 2016.
|
[13] |
G. Papa, P. Braca, S. Horn, et al., “Multisensor adaptive Bayesian tracking under time-varying target detection probability,” IEEE Transactions on Aerospace and Electronic Systems, vol.52, no.5, pp.2193–2209, 2016. doi: 10.1109/TAES.2016.150522
|
[14] |
A. K. Gostar, R. Hoseinnezhad, and A. Bab-Hadiashar, “Multi-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles,” Signal Processing, vol.119, pp.28–42, 2016. doi: 10.1016/j.sigpro.2015.07.007
|
[15] |
Y. G. Punchihewa, B. T. Vo, B. N. Vo, et al., “Multiple object tracking in unknown backgrounds with labeled random finite sets,” IEEE Transactions on Signal Processing, vol.66, no.11, pp.3040–3055, 2018. doi: 10.1109/TSP.2018.2821650
|
[16] |
J. X. Liu, Z. L. Wang, and M. Xu, “DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network,” Information Fusion, vol.53, pp.289–304, 2020. doi: 10.1016/j.inffus.2019.06.012
|
[17] |
T. C. Li, J. M. Corchado, and H. M. Chen, “Distributed flooding-then-clustering: A lazy networking approach for distributed multiple target tracking,” in Proceedings of the 21st International Conference on Information Fusion, Cambridge, UK, pp.2415–2422, 2018.
|
[18] |
J. D. Fan and W. X. Xie, “An efficient distributed multi-sensor multi-target tracking algorithm,” Journal of Signal Processing, vol.37, no.3, pp.390–398, 2021. (in Chinese) doi: 10.16798/j.issn.1003-0530.2021.03.009
|
[19] |
J. Y. Zhou, T. C. Li, X. X. Wang, et al., “Target tracking with equality/inequality constraints based on trajectory function of time,” IEEE Signal Processing Letters, vol.28, pp.1330–1334, 2021. doi: 10.1109/LSP.2021.3090271
|
[20] |
T. C. Li, X. X. Wang, Y. Liang, et al., “On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking,” IEEE Transactions on Signal Processing, vol.68, pp.2883–2896, 2020. doi: 10.1109/TSP.2020.2985643
|
[21] |
S. D. Gupta, M. Coates, and M. Rabbat, “Error propagation in gossip-based distributed particle filters,” IEEE Transactions on Signal and Information Processing over Networks, vol.1, no.3, pp.148–163, 2015. doi: 10.1109/TSIPN.2015.2471846
|
[22] |
F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Transactions on Signal Processing, vol.58, no.3, pp.1035–1048, 2010. doi: 10.1109/TSP.2009.2033729
|
[23] |
F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed Kalman filtering and smoothing,” IEEE Transactions on Automatic Control, vol.55, no.9, pp.2069–2084, 2010. doi: 10.1109/TAC.2010.2042987
|
[24] |
T. C. Li, J. M. Corchado, and J. Prieto, “Convergence of distributed flooding and its application for distributed Bayesian filtering,” IEEE Transactions on Signal and Information Processing over Networks, vol.3, no.3, pp.580–591, 2017. doi: 10.1109/TSIPN.2016.2631944
|
[25] |
M. Ester, H. P. Kriegel, J. Sander, et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, pp.226–231, 1996.
|
[26] |
A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters, vol.31, no.8, pp.651–666, 2010. doi: 10.1016/j.patrec.2009.09.011
|
[27] |
H. S. Park and C. H. Jun, “A simple and fast algorithm for K-medoids clustering,” Expert Systems with Applications, vol.36, no.2, pp.3336–3341, 2009. doi: 10.1016/j.eswa.2008.01.039
|
[28] |
T. C. Li, J. Prieto, H. Q. Fan, et al., “A robust multi-sensor PHD filter based on multi-sensor measurement clustering,” IEEE Communications Letters, vol.22, no.10, pp.2064–2067, 2018. doi: 10.1109/LCOMM.2018.2863387
|
[29] |
D. Schuhmacher, B. T. Vo, and B. N. Vo, “A consistent metric for performance evaluation of multi-object filters,” IEEE Transactions on Signal Processing, vol.56, no.8, pp.3447–3457, 2008. doi: 10.1109/TSP.2008.920469
|