Towards Evaluating the Robustness of Adversarial Attacks Against Image Scaling Transformation
-
Graphical Abstract
-
Abstract
The robustness of adversarial examples to image scaling transformation is usually ignored when most existing adversarial attacks are proposed. In contrast, image scaling is often the first step of the model to transfer various sizes of input images into fixed ones. We evaluate the impact of image scaling on the robustness of adversarial examples applied to image classification tasks. We set up an image scaling system to provide a basis for robustness evaluation and conduct experiments in different situations to explore the relationship between image scaling and the robustness of adversarial examples. Experiment results show that various scaling algorithms have a similar impact on the robustness of adversarial examples, but the scaling ratio significantly impacts it.
-
-