Citation: | SHAO Sujie, LI Yi, GUO Shaoyong, et al., “Delay and Energy Consumption Oriented UAV Inspection Business Collaboration Computing Mechanism in Edge Computing Based Electric Power IoT,” Chinese Journal of Electronics, vol. 32, no. 1, pp. 13-25, 2023, doi: 10.23919/cje.2021.00.312 |
[1] |
Zhao Nan, Lu Weidang, Sheng Min, et al., “UAV-assisted emergency networks in disasters,” IEEE Wireless Communications, vol.26, no.1, pp.45–51, 2019. doi: 10.1109/MWC.2018.1800160
|
[2] |
Zhao Nan, Cheng Fen, Yu F. Richard, et al., “Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment,” IEEE Transactions on Communication, vol.66, no.5, pp.2281–2294, 2018. doi: 10.1109/TCOMM.2018.2792014
|
[3] |
F. Huang, J. Chen, H. Wang, et al., “UAV-assisted SWIPT in Internet of things with power splitting: Trajectory design and power allocation,” IEEE Access, vol.7, pp.68260–68270, 2019. doi: 10.1109/ACCESS.2019.2918135
|
[4] |
S. Y. Derakhshandeh, Z. Mobini, M. Mohammadi, et al., “UAV-assisted fault location in power distribution systems: An optimization approach,” IEEE Transactions on Smart Grid, vol.10, no.4, pp.4628–4636, 2019. doi: 10.1109/TSG.2018.2865977
|
[5] |
L. Lin, X. Liao, H. Jin, et al., “Computation offloading toward edge computing,” Proceedings of the IEEE, vol.107, no.8, pp.1584–1607, 2019. doi: 10.1109/JPROC.2019.2922285
|
[6] |
H. El-Sayed, S. Sankar, M. Prasad, et al., “Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment,” IEEE Access, vol.6, pp.1706–1717, 2017. doi: 10.1109/ACCESS.2017.2780087
|
[7] |
Z. Zhou, C. Zhang, C. Xu, et al., “Energy-efficient industrial Internet of UAVs for power line inspection in smart grid,” IEEE Transactions on Industrial Informatics, vol.14, no.6, pp.2705–2714, 2018. doi: 10.1109/TII.2018.2794320
|
[8] |
L. Jiao, A. M. Tulino, J. Llorca, et al., “Smoothed online resource allocation in multi-tier distributed cloud networks,” IEEE/ACM Transactions on Networking, vol.25, no.4, pp.2556–2570, 2017. doi: 10.1109/TNET.2017.2707142
|
[9] |
H. Dong, N. Wu, G. Feng, and X. Gao, “Research on computing task allocation method based on multi-UAVs collaboration,” in Proceedings of 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, pp.86–93, 2020.
|
[10] |
Y. Li, S. Zhang, J. Chen, T. Jiang, and F. Ye, “Multi-UAV cooperative mission assignment algorithm based on ACO method,” in Proceedings of 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, pp.304–308, 2020
|
[11] |
X. Wu, Y. Yin, L. Xu, et al., “Multi-UAV task allocation based on improved genetic algorithm,” IEEE Access, vol.9, pp.100369–100379, 2021. doi: 10.1109/ACCESS.2021.3097094
|
[12] |
M. Li, N. Cheng, J. Gao, et al., “Energy-efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization,” IEEE Transactions on Vehicular Technology, vol.69, no.3, pp.3424–3438, 2020. doi: 10.1109/TVT.2020.2968343
|
[13] |
Y. Wang, H. Wang, and X. Wei, “Energy-efficient UAV deployment and task scheduling in multi-UAV edge computing,” in Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, pp.1147–1152, 2020
|
[14] |
N. Kherraf, H. A. Alameddine, and S. Sharafeddine, “Optimized provisioning of edge computing resources with heterogeneous workload in IoT networks,” IEEE Transactions on Network and Service Management, vol.16, no.2, pp.459–474, 2019. doi: 10.1109/TNSM.2019.2894955
|
[15] |
Z. Haitao, D. Yi, Z. Mengkang, et al., “Multipath transmission workload balancing optimization scheme based on mobile edge computing in vehicular heterogeneous network,” IEEE Access, vol.7, pp.116047–116055, 2019. doi: 10.1109/ACCESS.2019.2934770
|
[16] |
Q. Fan and N. Ansari, “Application aware workload allocation for edge computing-based IoT,” IEEE Internet of Things Journal, vol.5, no.3, pp.2146–2153, 2018. doi: 10.1109/JIOT.2018.2826006
|
[17] |
R. Deng, R. Lu, C. Lai, et al., “Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption,” IEEE Internet of Things Journal, vol.3, no.6, pp.1171–1181, 2016. doi: 10.1109/JIOT.2016.2565516
|
[18] |
W. Yu, Y. Huang, and A. Garcia-Ortiz, “Distributed optimal on-line task allocation algorithm for wireless sensor networks,” IEEE Sensors Journal, vol.18, no.1, pp.446–458, 2018. doi: 10.1109/JSEN.2017.2768659
|
[19] |
B. Yang, W. K. Chai, Z. Xu, et al., “Cost-efficient NFV-enabled mobile edge-cloud for low latency mobile applications,” IEEE Transactions on Network and Service Management, vol.15, no.1, pp.475–488, 2018. doi: 10.1109/TNSM.2018.2790081
|
[20] |
C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, “Completion time and energy optimization in the UAV-enabled mobile-edge computing system,” IEEE Internet of Things Journal, vol.7, no.8, pp.7808–7822, 2020. doi: 10.1109/JIOT.2020.2993260
|
[21] |
C Zhou, W Wu, H He, et al., “Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN,” IEEE Transactions on Wireless Communications, vol.20, no.2, pp.911–925, 2021. doi: 10.1109/TWC.2020.3029143
|
[22] |
M. Guo, L. Li, and Q. Guan, “Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems,” IEEE Access, vol.7, pp.78685–78697, 2019. doi: 10.1109/ACCESS.2019.2922992
|
[23] |
P. Wang, C. Yao, Z. Zheng, et al., “Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems,” IEEE Internet of Things Journal, vol.6, no.2, pp.2872–2884, 2019. doi: 10.1109/JIOT.2018.2876198
|
[24] |
Q. Li, J. Zhao, Y. Gong, et al., “Energy-efficient computation offloading and resource allocation in fog computing for Internet of everything,” China Communications, vol.16, no.3, pp.32–41, 2019. doi: 10.12676/j.cc.2019.03.004
|
[25] |
M. Guo, Q. Guan, and W. Ke, “Optimal scheduling of containers in queueing cloud computing systems with a heterogeneous workload,” IEEE Access, vol.6, pp.15178–15191, 2018. doi: 10.1109/ACCESS.2018.2801319
|
[26] |
B. Omoniwa, R. Hussain, M. Adil, et al., “An optimal relay scheme for outage minimization in fog-based Internet-of-things (IoT) networks,” IEEE Internet of Things Journal, vol.6, no.2, pp.3044–3-545, 2019. doi: 10.1109/JIOT.2018.2878609
|
[27] |
X. Zhang, Y. Zhou, Q. Zhang, et al., “Problem specific MOEA/D for barrier coverage with wireless sensors,” IEEE Transactions on Cybernetics, vol.47, no.11, pp.3854–3865, 2017. doi: 10.1109/TCYB.2016.2585745
|
[28] |
X. Ma, Q. Zhang, G. Tian, et al., “On Tchebycheff decomposition approaches for multiobjective evolutionary optimization,” IEEE Transaction on Evolutionary Computation, vol.22, no.2, pp.226–244, 2018. doi: 10.1109/TEVC.2017.2704118
|
[29] |
B. Jia, H. Hu, Y. Zeng, T. Xu, et al., “Double-matching resource allocation strategy in fog computing networks based on cost efficiency,” Journal of Communications and Networks, vol.20, no.3, pp.237–246, 2018. doi: 10.1109/JCN.2018.000036
|
[30] |
S. Li, Q. Ni, Y. Sun, et al., “Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era,” IEEE Transacions on Industrial Informatics, vol.14, no.6, pp.2618–2628, 2018. doi: 10.1109/TII.2018.2799177
|
[31] |
L. Prestes, M. R. Delgado, R. Lüders, et al., “Boosting the performance of MOEA/D-DRA with a multi-objective hyper-heuristic based on irace and UCB method for heuristic selection,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC), Rio deJaneiro, Brazil, pp.1–8, 2018
|
[32] |
H. Farzin, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, et al., “A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids,” IEEE Transactions on Smart Grid, vol.8, no.1, pp.117–127, 2017. doi: 10.1109/TSG.2016.2598678
|