Citation: | SHAO Sujie, LI Yi, GUO Shaoyong, WANG Chenhui, CHEN Xingyu, QIU Xuesong. Delay and Energy Consumption Oriented UAV Inspection Business Collaboration Computing Mechanism in Edge Computing Based Electric Power IoT[J]. Chinese Journal of Electronics, 2023, 32(1): 13-25. doi: 10.23919/cje.2021.00.312 |
[1] |
Zhao Nan, Lu Weidang, Sheng Min, et al., “UAV-assisted emergency networks in disasters,” IEEE Wireless Communications, vol.26, no.1, pp.45–51, 2019. doi: 10.1109/MWC.2018.1800160
|
[2] |
Zhao Nan, Cheng Fen, Yu F. Richard, et al., “Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment,” IEEE Transactions on Communication, vol.66, no.5, pp.2281–2294, 2018. doi: 10.1109/TCOMM.2018.2792014
|
[3] |
F. Huang, J. Chen, H. Wang, et al., “UAV-assisted SWIPT in Internet of things with power splitting: Trajectory design and power allocation,” IEEE Access, vol.7, pp.68260–68270, 2019. doi: 10.1109/ACCESS.2019.2918135
|
[4] |
S. Y. Derakhshandeh, Z. Mobini, M. Mohammadi, et al., “UAV-assisted fault location in power distribution systems: An optimization approach,” IEEE Transactions on Smart Grid, vol.10, no.4, pp.4628–4636, 2019. doi: 10.1109/TSG.2018.2865977
|
[5] |
L. Lin, X. Liao, H. Jin, et al., “Computation offloading toward edge computing,” Proceedings of the IEEE, vol.107, no.8, pp.1584–1607, 2019. doi: 10.1109/JPROC.2019.2922285
|
[6] |
H. El-Sayed, S. Sankar, M. Prasad, et al., “Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment,” IEEE Access, vol.6, pp.1706–1717, 2017. doi: 10.1109/ACCESS.2017.2780087
|
[7] |
Z. Zhou, C. Zhang, C. Xu, et al., “Energy-efficient industrial Internet of UAVs for power line inspection in smart grid,” IEEE Transactions on Industrial Informatics, vol.14, no.6, pp.2705–2714, 2018. doi: 10.1109/TII.2018.2794320
|
[8] |
L. Jiao, A. M. Tulino, J. Llorca, et al., “Smoothed online resource allocation in multi-tier distributed cloud networks,” IEEE/ACM Transactions on Networking, vol.25, no.4, pp.2556–2570, 2017. doi: 10.1109/TNET.2017.2707142
|
[9] |
H. Dong, N. Wu, G. Feng, and X. Gao, “Research on computing task allocation method based on multi-UAVs collaboration,” in Proceedings of 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, pp.86–93, 2020.
|
[10] |
Y. Li, S. Zhang, J. Chen, T. Jiang, and F. Ye, “Multi-UAV cooperative mission assignment algorithm based on ACO method,” in Proceedings of 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, pp.304–308, 2020
|
[11] |
X. Wu, Y. Yin, L. Xu, et al., “Multi-UAV task allocation based on improved genetic algorithm,” IEEE Access, vol.9, pp.100369–100379, 2021. doi: 10.1109/ACCESS.2021.3097094
|
[12] |
M. Li, N. Cheng, J. Gao, et al., “Energy-efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization,” IEEE Transactions on Vehicular Technology, vol.69, no.3, pp.3424–3438, 2020. doi: 10.1109/TVT.2020.2968343
|
[13] |
Y. Wang, H. Wang, and X. Wei, “Energy-efficient UAV deployment and task scheduling in multi-UAV edge computing,” in Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, pp.1147–1152, 2020
|
[14] |
N. Kherraf, H. A. Alameddine, and S. Sharafeddine, “Optimized provisioning of edge computing resources with heterogeneous workload in IoT networks,” IEEE Transactions on Network and Service Management, vol.16, no.2, pp.459–474, 2019. doi: 10.1109/TNSM.2019.2894955
|
[15] |
Z. Haitao, D. Yi, Z. Mengkang, et al., “Multipath transmission workload balancing optimization scheme based on mobile edge computing in vehicular heterogeneous network,” IEEE Access, vol.7, pp.116047–116055, 2019. doi: 10.1109/ACCESS.2019.2934770
|
[16] |
Q. Fan and N. Ansari, “Application aware workload allocation for edge computing-based IoT,” IEEE Internet of Things Journal, vol.5, no.3, pp.2146–2153, 2018. doi: 10.1109/JIOT.2018.2826006
|
[17] |
R. Deng, R. Lu, C. Lai, et al., “Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption,” IEEE Internet of Things Journal, vol.3, no.6, pp.1171–1181, 2016. doi: 10.1109/JIOT.2016.2565516
|
[18] |
W. Yu, Y. Huang, and A. Garcia-Ortiz, “Distributed optimal on-line task allocation algorithm for wireless sensor networks,” IEEE Sensors Journal, vol.18, no.1, pp.446–458, 2018. doi: 10.1109/JSEN.2017.2768659
|
[19] |
B. Yang, W. K. Chai, Z. Xu, et al., “Cost-efficient NFV-enabled mobile edge-cloud for low latency mobile applications,” IEEE Transactions on Network and Service Management, vol.15, no.1, pp.475–488, 2018. doi: 10.1109/TNSM.2018.2790081
|
[20] |
C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, “Completion time and energy optimization in the UAV-enabled mobile-edge computing system,” IEEE Internet of Things Journal, vol.7, no.8, pp.7808–7822, 2020. doi: 10.1109/JIOT.2020.2993260
|
[21] |
C Zhou, W Wu, H He, et al., “Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN,” IEEE Transactions on Wireless Communications, vol.20, no.2, pp.911–925, 2021. doi: 10.1109/TWC.2020.3029143
|
[22] |
M. Guo, L. Li, and Q. Guan, “Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems,” IEEE Access, vol.7, pp.78685–78697, 2019. doi: 10.1109/ACCESS.2019.2922992
|
[23] |
P. Wang, C. Yao, Z. Zheng, et al., “Joint task assignment, transmission, and computing resource allocation in multilayer mobile edge computing systems,” IEEE Internet of Things Journal, vol.6, no.2, pp.2872–2884, 2019. doi: 10.1109/JIOT.2018.2876198
|
[24] |
Q. Li, J. Zhao, Y. Gong, et al., “Energy-efficient computation offloading and resource allocation in fog computing for Internet of everything,” China Communications, vol.16, no.3, pp.32–41, 2019. doi: 10.12676/j.cc.2019.03.004
|
[25] |
M. Guo, Q. Guan, and W. Ke, “Optimal scheduling of containers in queueing cloud computing systems with a heterogeneous workload,” IEEE Access, vol.6, pp.15178–15191, 2018. doi: 10.1109/ACCESS.2018.2801319
|
[26] |
B. Omoniwa, R. Hussain, M. Adil, et al., “An optimal relay scheme for outage minimization in fog-based Internet-of-things (IoT) networks,” IEEE Internet of Things Journal, vol.6, no.2, pp.3044–3-545, 2019. doi: 10.1109/JIOT.2018.2878609
|
[27] |
X. Zhang, Y. Zhou, Q. Zhang, et al., “Problem specific MOEA/D for barrier coverage with wireless sensors,” IEEE Transactions on Cybernetics, vol.47, no.11, pp.3854–3865, 2017. doi: 10.1109/TCYB.2016.2585745
|
[28] |
X. Ma, Q. Zhang, G. Tian, et al., “On Tchebycheff decomposition approaches for multiobjective evolutionary optimization,” IEEE Transaction on Evolutionary Computation, vol.22, no.2, pp.226–244, 2018. doi: 10.1109/TEVC.2017.2704118
|
[29] |
B. Jia, H. Hu, Y. Zeng, T. Xu, et al., “Double-matching resource allocation strategy in fog computing networks based on cost efficiency,” Journal of Communications and Networks, vol.20, no.3, pp.237–246, 2018. doi: 10.1109/JCN.2018.000036
|
[30] |
S. Li, Q. Ni, Y. Sun, et al., “Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era,” IEEE Transacions on Industrial Informatics, vol.14, no.6, pp.2618–2628, 2018. doi: 10.1109/TII.2018.2799177
|
[31] |
L. Prestes, M. R. Delgado, R. Lüders, et al., “Boosting the performance of MOEA/D-DRA with a multi-objective hyper-heuristic based on irace and UCB method for heuristic selection,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC), Rio deJaneiro, Brazil, pp.1–8, 2018
|
[32] |
H. Farzin, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, et al., “A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids,” IEEE Transactions on Smart Grid, vol.8, no.1, pp.117–127, 2017. doi: 10.1109/TSG.2016.2598678
|