Citation: | GUO Kefeng, LIU Rui, DONG Chao, et al., “Ergodic Capacity of NOMA-Based Overlay Cognitive Integrated Satellite-UAV-Terrestrial Networks,” Chinese Journal of Electronics, vol. 32, no. 2, pp. 273-282, 2023, doi: 10.23919/cje.2021.00.316 |
[1] |
M. Jia, X. Gu, Q. Guo, et al., “Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G,” IEEE Wireless Commun., vol.23, no.6, pp.96–106, 2016. doi: 10.1109/MWC.2016.1500108WC
|
[2] |
K. Guo, K. An, B. Zhang, et al., “Physical layer security for multiuser satellite communication systems with threshold-based scheduling scheme,” IEEE Trans. Vehi. Tech., vol.69, no.5, pp.5129–5141, 2020. doi: 10.1109/TVT.2020.2979496
|
[3] |
M. Jia, X. Zhang, J. Sun, et al., “Intelligent resource management for satellite and terrestrial spectrum shared networking toward B5G,” IEEE Wireless Commun., vol.27, no.1, pp.54–61, 2020. doi: 10.1109/MWC.001.1900238
|
[4] |
C. Dong, Y. Shen, Y. Qu, et al., “UAVs as an intelligent service: boosting edge intelligence for air-ground integrated networks,” IEEE Netw., vol.35, no.4, pp.167–175, 2021. doi: 10.1109/MNET.011.2000651
|
[5] |
X. Li, Q. Wang, Y. Liu, et al., “UAV-aided multi-way NOMA networks with residual hardware impairments,” IEEE Wireless Communi. Lett., vol.9, no.9, pp.1538–1542, 2020. doi: 10.1109/LWC.2020.2996782
|
[6] |
J. Chen, Q. Wu, Y. Xu, et al., “Spectrum allocation for task-driven UAV communication networks exploiting game theory,” IEEE Trans. Commun., vol.28, no.4, pp.174–181, 2021. doi: 10.1109/MWC.001.2000444
|
[7] |
Q. Wu, G. Ding, Y. Xu, et al., “Cognitive internet of things: A new paradigm beyond connection,” IEEE Internet Things J., vol.1, no.2, pp.129–143, 2014. doi: 10.1109/JIOT.2014.2311513
|
[8] |
X. Zhang, B. Zhang, K. An, et al., “Stochastic geometry-based analysis of cache-enabled hybrid satellite-aerial-terrestrial networks with non-orthogonal multiple access,” IEEE Trans. Wireless Communi., vol.21, no.2, pp.1272–1287, 2022. doi: 10.1109/TWC.2021.3103499
|
[9] |
Z. Lin, M. Lin, W. -P. Zhu, et al., “Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks,” IEEE Trans. Cogn. Commun., vol.7, no.2, pp.567–580, 2021. doi: 10.1109/TCCN.2020.3016096
|
[10] |
X. Zhang, D. Guo, K. An, et al., “Auction-based multichannel cooperative spectrum sharing in hybrid satellite-terrestrial IoT networks,” IEEE Internet Things J., vol.8, no.8, pp.7009–7023, 2021. doi: 10.1109/JIOT.2020.3037408
|
[11] |
K. Guo, M. Lin, B. Zhang, et al., “On the performance of LMS communication with hardware impairments and interference,” IEEE Trans. Commun., vol.67, no.2, pp.1490–1505, 2019. doi: 10.1109/TCOMM.2018.2878848
|
[12] |
Q. Huang, M. Lin, W. -P. Zhu, et al., “Performance analysis of integrated satellite-terrestrial multiantenna relay networks with multiuser scheduling,” IEEE Trans. Aerosp. Electron. Syst., vol.56, no.4, pp.2718–2731, 2020. doi: 10.1109/TAES.2019.2952698
|
[13] |
M. Lin, Q. Huang, T. de Cola, et al., “Integrated 5G-satellite networks: A perspective on physical layer reliability and security,” IEEE Wireless Commun., vol.27, no.6, pp.152–159, 2020. doi: 10.1109/MWC.001.2000143
|
[14] |
K. An and T. Liang, “Hybrid satellite-terrestrial relay networks with adaptive transmission,” IEEE Trans. Vehi. Tech., vol.68, no.12, pp.12448–12452, 2019. doi: 10.1109/TVT.2019.2944883
|
[15] |
K. An, Y. Li, X. Yan, and T. Liang, “On the performance of cache-enabled hybrid satellite-terrestrial relay networks,” IEEE Wireless Commun. Lett., vol.8, no.5, pp.1506–1509, 2019. doi: 10.1109/LWC.2019.2924631
|
[16] |
K. Guo, K. An, B. Zhang, Y. Huang, et al., “On the performance of the uplink satellite multi-terrestrial relay networks with hardware impairments and interference,” IEEE Syst. J., vol.13, no.3, pp.2297–2308, 2019. doi: 10.1109/JSYST.2019.2901800
|
[17] |
Q. Huang, M. Lin, J. Wang, T. A. Tsiftsis, et al., “Energy efficient beamforming schemes for satellite-aerial-terrestrial networks,” IEEE Trans. Commun., vol.68, no.6, pp.3863–3875, 2020. doi: 10.1109/TCOMM.2020.2978044
|
[18] |
X. Liu, Y. Liu, and Y. Chen, “Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks,” IEEE J. Sel. Areas Commun., vol.39, no.7, article no.2055, 2021.
|
[19] |
Z. Xiao, L. Zhu, and X. -G. Xia, “UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges,” China Communi., vol.17, no.9, pp.147–166, 2020. doi: 10.23919/JCC.2020.09.012
|
[20] |
L. Zhu, J. Zhang, Z. Xiao, et al., “Millimeter-wave full-duplex UAV relay: Joint positioning, beamforming, and power control,” IEEE J. Sel. Areas Commun., vol.38, no.9, pp.2057–2073, 2020. doi: 10.1109/JSAC.2020.3000879
|
[21] |
Z. Lin, M. Lin, T. de Cola, J. -B. Wang, et al., “Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks,” IEEE Internet Things J., vol.8, no.14, pp.11123–11134, 2021. doi: 10.1109/JIOT.2021.3051603
|
[22] |
Z. Lin, M. Lin, B. Champagne, et al., “Secure and energy efficient transmission for RSMA-based cognitive satellite-terrestrial networks,” IEEE Wireless Communi. Lett., vol.10, no.2, pp.251–255, 2021. doi: 10.1109/LWC.2020.3026700
|
[23] |
Y. Qu, H. Dai, H. Wang, et al., “Service provisioning for UAV-enabled mobile edge computing,” IEEE J. Sel. Areas Commun., vol.39, no.11, pp.3287–3305, 2021. doi: 10.1109/JSAC.2021.3088660
|
[24] |
J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-based resource allocation for UAV networks,” IEEE Trans. Wireless Commun., vol.19, no.2, pp.729–743, 2020. doi: 10.1109/TWC.2019.2935201
|
[25] |
J. Chen, P. Chen, Q. Wu, et al., “A game-theoretic perspective on resource management for large-scale UAV communication networks,” China Commun., vol.18, no.1, pp.70–87, 2021. doi: 10.23919/JCC.2021.01.007
|
[26] |
P. K. Sharma, P. K. Upadhyay, D. B. da Costa, et al., “Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial systems with secondary network selection,” IEEE Trans. Wireless Commun., vol.16, no.10, pp.6586–6601, 2017. doi: 10.1109/TWC.2017.2725950
|
[27] |
Y. Ruan, Y. Li, C. Wang, R. Zhang, et al., “Power allocation in cognitive satellite-vehicular networks from energy-spectral efficiency tradeoff perspective,” IEEE Trans. Cogn. Commun., vol.5, no.2, pp.318–329, 2019. doi: 10.1109/TCCN.2019.2905199
|
[28] |
Y. Ruan, Y. Li, C. Wang, and R. Zhang, “Energy efficient adaptive transmissions in integrated satellite-terrestrial networks with SER constraints,” IEEE Trans. Wireless Commun., vol.17, no.1, pp.210–222, 2018. doi: 10.1109/TWC.2017.2764472
|
[29] |
M. Lin, Z. Lin, W. Zhu, and J. Wang, “Joint beamforming for secure communication in cognitive satellite terrestrial networks,” IEEE J. Sel. Areas Commun., vol.36, no.5, pp.1017–1029, 2018. doi: 10.1109/JSAC.2018.2832819
|
[30] |
Z. Lin, M. Lin, B. Champagne, et al., “Secure beamforming for cognitive satellite terrestrial networks with unknown eavesdroppers,” IEEE Syst. J., vol.15, no.2, pp.2186–2189, 2021. doi: 10.1109/JSYST.2020.2983309
|
[31] |
L. Zhu, J. Zhang, Z. Xiao, X. Cao, et al., “Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming,” IEEE Trans. Wireless Communi., vol.18, no.11, pp.5065–5079, 2019. doi: 10.1109/TWC.2019.2932070
|
[32] |
L. Zhu, J. Zhang, Z. Xiao, X. Cao, and D. O. Wu, “Optimal user pairing for downlink non-orthogonal multiple access (NOMA),” IEEE Wireless Commun. lett., vol.8, no.2, pp.328–331, 2019. doi: 10.1109/LWC.2018.2853741
|
[33] |
X. Zhang, K. An, B. Zhang, et al., “Vickrey auction-based secondary relay selection in cognitive hybrid satellite-terrestrial overlay networks with non-orthogonal multiple access,” IEEE Wireless. Commun. Lett., vol.9, no.5, pp.628–632, 2020. doi: 10.1109/LWC.2019.2963863
|
[34] |
X. Zhang, B. Zhang, K. An, et al., “Outage performance of NOMA-based cognitive hybrid satellite-terrestrial overlay networks by amplify-and-forward protocols,” IEEE Access, vol.7, pp.85372–85381, 2019. doi: 10.1109/ACCESS.2019.2925314
|
[35] |
M. Jia, Q. Gao, Q. Guo, X. Gu, and X. Shen, “Power multiplexing NOMA and bandwidth compression for satellite-terrestrial networks,” IEEE Trans. Vehi. Tech., vol.68, no.11, pp.11107–11117, 2019. doi: 10.1109/TVT.2019.2944077
|
[36] |
X. Yue, Y. Liu, Y. Yao, T. Li, et al., “Outage behaviors of NOMA-based satellite network over shadowed-rician fading channels,” IEEE Trans. Vehi. Tech., vol.69, no.6, pp.6818–6821, 2020. doi: 10.1109/TVT.2020.2988026
|
[37] |
K. Guo, K. An, F. Zhou, T. Tsiftsis, et al., “On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments,” IEEE Trans. Vehi. Tech., vol.70, no.4, pp.3661–3676, 2021. doi: 10.1109/TVT.2021.3068062
|
[38] |
R. Liu, K. Guo, K. An, S. Zhu, et al., “NOMA-based integrated satellite-terrestrial relay networks under spectrum sharing environment,” IEEE Wireless Commun. Lett., vol.10, no.6, pp.1266–1270, 2021. doi: 10.1109/LWC.2021.3063759
|
[39] |
R. Liu, K. Guo, K. An, S. Zhu, et al., “Performance evaluation of NOMA-based cognitive integrated satellite terrestrial relay networks with primary interference,” IEEE Access, vol.9, pp.71422–71434, 2021. doi: 10.1109/ACCESS.2021.3078630
|
[40] |
M. K. Arti, “Channel estimation and detection in satellite communication systems,” IEEE Trans. Vehi. Tech., vol.65, no.12, pp.10173–10179, 2016. doi: 10.1109/TVT.2016.2529661
|
[41] |
M. R. Bhatnagar, “Making two-way satellite relaying feasible: A differential modulation based approach,” IEEE Trans. Commun., vol.63, no.8, pp.2836–2847, 2015. doi: 10.1109/TCOMM.2015.2433915
|
[42] |
N. I. Miridakis, D. D. Vergados, and A. Michalas, “Dual-hop communication over a satellite relay and Shadowed Rician channels,” IEEE Trans. Vehi. Tech., vol.64, no.9, pp.4031–4040, 2015. doi: 10.1109/TVT.2014.2361832
|
[43] |
Wolfram Research, Inc., “The mathematical functions site,” Available at: http://functions.wolfram.com, 2021.
|
[44] |
I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, et al., Table of Integrals, Series and Products, 7th ed., Amsterdam, Elsevier, Boston, Massachusetts, USA, 2007.
|
[45] |
G. Farhadi and N. C. Beaulieu, “On the ergodic capacity of multi-hop wireless relaying systems,” IEEE Trans. Wireless Commun., vol.8, no.8, pp.2286–2291, 2009.
|
[46] |
A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Volume 3: More Special Functions, Gordon and Breach Science Publishers, New York, USA, 1990.
|