Citation: | Wuniu LIU, Junmei WANG, Qing HE, et al., “Model Checking Computation Tree Logic over Multi-Valued Decision Processes and Its Reduction Techniques,” Chinese Journal of Electronics, vol. 33, no. 6, pp. 1399–1411, 2024 doi: 10.23919/cje.2021.00.333 |
[1] |
C. Baier and J. P. Katoen, Principles of Model Checking. MIT Press, Cambridge, MA, USA, 2008.
|
[2] |
M. Huth and M. Kwiatkowska, “Quantitative analysis and model checking,” in Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, pp. 111–122, 1997.
|
[3] |
Y. M. Li and Z. Y. Ma, “Quantitative computation tree logic model checking based on generalized possibility measures,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2034–2047, 2015. doi: 10.1109/TFUZZ.2015.2396537
|
[4] |
H. Y. Pan, Y. M. Li, Y. Z. Cao, et al., “Model checking fuzzy computation tree logic,” Fuzzy Sets and Systems, vol. 262, pp. 60–77, 2015. doi: 10.1016/j.fss.2014.07.008
|
[5] |
Y. M. Li, “Quantitative model checking of linear-time properties based on generalized possibility measures,” Fuzzy Sets and Systems, vol. 320, pp. 17–39, 2017. doi: 10.1016/j.fss.2017.03.012
|
[6] |
Y. M. Li, L. H. Lei, and S. J. Li, “Computation tree logic model checking based on multi-valued possibility measures,” Information Sciences, vol. 485, pp. 87–113, 2019. doi: 10.1016/j.ins.2019.02.003
|
[7] |
Y. M. Li and J. L. Wei, “Possibilistic fuzzy linear temporal logic and its model checking,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 7, pp. 1899–1913, 2021. doi: 10.1109/TFUZZ.2020.2988848
|
[8] |
W. N. Liu, Q. He, and Y. M. Li, “Computation tree logic model checking over possibilistic decision processes under finite-memory scheduler,” in Proceedings of the 39th National Conference of Theoretical Computer Science, Yinchuan, China, pp. 75–88, 2021.
|
[9] |
W. N. Liu, Z. H. Li, and Y. M. Li, “Complex objective optimization in fuzzy environments,” Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 3539–3553, 2023. doi: 10.3233/JIFS-221966
|
[10] |
W. N. Liu and Y. M. Li, “Optimal strategy model checking in possibilistic decision processes,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 10, pp. 6620–6632, 2023. doi: 10.1109/TSMC.2023.3286127
|
[11] |
W. N. Liu, Q. He, Z. H. Li, et al., “Self-learning modeling in possibilistic model checking,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 264-278, 2024.
|
[12] |
Y. M. Li, W. N. Liu, J. M. Wang, et al., “Model checking of possibilistic linear-time properties based on generalized possibilistic decision processes,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 10, pp. 3495–3506, 2023. doi: 10.1109/TFUZZ.2023.3260446
|
[13] |
M. Chechik, “On interpreting results of model-checking with abstraction,” CSRG technical report 417, University of Toronto, Department of Computer Science, Canada, 2000.
|
[14] |
M. Chechik, B. Devereux, S. Easterbrook, et al., “Multi-valued symbolic model-checking,” ACM Transactions on Software Engineering and Methodology, vol. 12, no. 4, pp. 371–408, 2003. doi: 10.1145/990010.990011
|
[15] |
M. Chechik, S. Easterbrook, and V. Petrovykh, “Model-checking over multi-valued logics,” in Proceedings of the International Symposium of Formal Methods Europe, Berlin, Germany, pp. 72–98, 2001.
|
[16] |
M. Chechik, A. Gurfinkel, B. Devereux, et al., “Data structures for symbolic multi-valued model-checking,” Formal Methods in System Design, vol. 29, no. 3, pp. 295–344, 2006. doi: 10.1007/s10703-006-0016-z
|
[17] |
S. Hazelhurst, “Compositional model checking of partially ordered state spaces,” Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 1996.
|
[18] |
Y. Z. Cao and M. S. Ying, “Observability and decentralized control of fuzzy discrete-event systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 2, pp. 202–216, 2006. doi: 10.1109/TFUZZ.2005.864085
|
[19] |
W. L. Deng and D. W. Qiu, “Bifuzzy discrete event systems and their supervisory control theory,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2107–2121, 2015. doi: 10.1109/TFUZZ.2015.2403866
|
[20] |
F. Lin and H. Ying, “Modeling and control of fuzzy discrete event systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 32, no. 4, pp. 408–415, 2002. doi: 10.1109/TSMCB.2002.1018761
|
[21] |
D. W. Qiu, “Supervisory control of fuzzy discrete event systems: A formal approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 1, pp. 72–88, 2005. doi: 10.1109/TSMCB.2004.840457
|
[22] |
L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. doi: 10.1016/S0019-9958(65)90241-X
|
[23] |
L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 3–28, 1978. doi: 10.1016/0165-0114(78)90029-5
|
[24] |
D. Dubois, “Possibility theory and statistical reasoning,” Computational Statistics & Data Analysis, vol. 51, no. 1, pp. 47–69, 2006. doi: 10.1016/j.csda.2006.04.015
|
[25] |
D. Dubois and H. Prade, “Possibility theory, probability theory and multiple-valued logics: A clarification,” Annals of Mathematics and Artificial Intelligence, vol. 32, no. 1, pp. 35–66, 2001. doi: 10.1023/A:1016740830286
|
[26] |
D. Dubois and H. Prade, “Possibility theory and its applications: Where do we stand?” in Springer Handbook of Computational Intelligence, J. Kacprzyk and W. Pedrycz, Eds. Springer, Berlin, Heidelberg, Germany, pp. 31–60, 2015.
|
[27] |
D. Dubois, F. Dupin de Saint-Cyr, and H. Prade, “Update postulates without inertia,” in European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, Fribourg, Switzerland, pp. 162–170, 1995.
|
[28] |
Y. M. Li, Analysis of Fuzzy Systems. Science Press, Beijing, China, 2005. (in Chinese)
|