Citation: | WEN Juan, DENG Yaqian, PENG Wanli, XUE Yiming. Linguistic Steganalysis via Fusing Multi-Granularity Attentional Text Features[J]. Chinese Journal of Electronics, 2023, 32(1): 76-84. doi: 10.23919/cje.2022.00.009 |
[1] |
F. Petitcolas, R. Anderson, and M. Kuhn, “Information hiding - A survey,” Proceedings of the IEEE, vol.87, no.7, pp.1062–1078, 1999. doi: 10.1109/5.771065
|
[2] |
V. Sedighi, R. Cogranne, and J. Fridrich, “Content-adaptive steganography by minimizing statistical detectability,” IEEE Transactions on Information Forensics and Security, vol.11, no.2, pp.221–234, 2016. doi: 10.1109/TIFS.2015.2486744
|
[3] |
Y. Luo, J. Qin, Y. Tan, et al., “Coverless real-time image information hiding based on image block matching and dense convolutional network,” Journal of Real-Time Image Processing, vol.17, no.1, pp.125–135, 2020. doi: 10.1007/s11554-019-00917-3
|
[4] |
Y. Tew and K. Wong, “An overview of information hiding in H. 264/AVC compressed video,” IEEE Transactions on Circuits and Systems for Video Technology, vol.24, no.2, pp.305–319, 2014. doi: 10.1109/TCSVT.2013.2276710
|
[5] |
Y. Xue, J. Zhou, H. Zeng, et al., “An adaptive steganographic scheme for H. 264/AVC video with distortion optimization,” Signal Processing: Image Communication, vol.76, no.8, pp.22–30, 2019. doi: 10.1016/j.image.2019.04.012
|
[6] |
Y. Luo and Y. Huang, “Text steganography with high embedding rate: Using recurrent neural networks to generate chinese classic poetry,” in Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), Philadelphia, PA, USA, pp.99–104, 2017.
|
[7] |
J. Wen, X. Zhou, M. Li, et al., “A novel natural language steganographic framework based on image description neural network,” Journal of Visual Communication and Image Representation, vol.61, no.5, pp.157–169, 2019. doi: 10.1016/j.jvcir.2019.03.016
|
[8] |
T. Fang, M. Jaggi, and K. J. Argyraki, “Generating steganographic text with lstms,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, Canada, pp.100–106, 2017.
|
[9] |
Z. Yang, X. Guo, Z. Chen, Y. Huang, et al., “RNN-stega: Linguistic steganography based on recurrent neural networks,” IEEE Transactions on Information Forensics and Security, vol.14, no.5, pp.1280–1295, 2018. doi: 10.1109/TIFS.2018.2871746
|
[10] |
L. Xiang, X. Sun, G. Luo, and B. Xia, “Linguistic steganalysis using the features derived from synonym frequency,” Multimedia Tools and Applications, vol.71, no.3, pp.1893–1911, 2014. doi: 10.1007/s11042-012-1313-8
|
[11] |
H. Yang and X. Cao, “Linguistic steganalysis based on meta features and immune mechanism,” Chinese Journal of Electronics, vol.19, no.4, pp.661–666, 2010.
|
[12] |
J. Wen, X. Zhou, P. Zhong, et al., “Convolutional neural network based text steganalysis,” IEEE Signal Processing Letters, vol.26, no.3, pp.460–464, 2019. doi: 10.1109/LSP.2019.2895286
|
[13] |
Z. Yang, K. Wang, J. Li, et al., “TS-RNN: Text steganalysis based on recurrent neural networks,” IEEE Signal Processing Letters, vol.26, no.12, pp.1743–1747, 2019. doi: 10.1109/LSP.2019.2920452
|
[14] |
Y. Niu, J. Wen, P. Zhong, et al., “A hybrid R-BILSTM-C neural network based text steganalysis,” IEEE Signal Processing Letters, vol.26, no.12, pp.1907–1911, 2019. doi: 10.1109/LSP.2019.2953953
|
[15] |
H. Yang, Y. Bao, Z. Yang, et al., “Linguistic steganalysis via densely connected LSTM with feature pyramid,” in Proceedings of IH&MMSec’20: ACM Workshop on Information Hiding and Multimedia Security, Denver, CO, USA, pp.5–10, 2020.
|
[16] |
Z. Yang, Y. Huang, and Y. Zhang, “TS-CSW: Text steganalysis and hidden capacity estimation based on convolutional sliding windows,” Multimedia Tools and Applications, vol.79, no.25, pp.18293–18316, 2020. doi: 10.1007/s11042-020-08716-w
|
[17] |
W. Peng, J. Zhang, Y. Xue, et al., “Real-time text steganalysis based on multi-stage transfer learning,” IEEE Signal Processing Letters, vol.28, no.12, pp.1510–1514, 2021. doi: 10.1109/LSP.2021.3097241
|
[18] |
Y. Xue, L. Kong, W. Peng, et al., “An effective linguistic steganalysis framework based on hierarchical mutual learning,” Information Sciences, vol.586, no.2, pp.140–154, 2022. doi: 10.1016/j.ins.2021.11.086
|
[19] |
A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Proceedings of 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp.5998–6008, 2017.
|
[20] |
K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp.770–778, 2016,
|
[21] |
G. Huang, Z. Liu, L. van der Maaten, et al., “Densely connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp.2261–2269, 2017.
|
[22] |
L. Xiang, X. Yang, J. Zhang, et al., “A word-frequency-preserving steganographic method based on synonym substitution,” International Journal of Computational Science and Engineering, vol.19, no.1, pp.132–139, 2019. doi: 10.1504/IJCSE.2019.099648
|
[23] |
M. Li, K. Mu, P. Zhong, et al., “Generating steganographic image description by dynamic synonym substitution,” Signal Processing, vol.164, no.9, pp.193–201, 2019. doi: 10.1016/j.sigpro.2019.06.014
|
[24] |
L. Xiang, J. Yu, C. Yang, et al., “A word-embedding-based steganalysis method for linguistic steganography via synonym substitution,” IEEE Access, vol.6, no.10, pp.64131–64141, 2018. doi: 10.1109/ACCESS.2018.2878273
|
[25] |
H. M. Meral, B. Sankur, A. S. Özsoy, et al., “Natural language watermarking via morphosyntactic alterations,” Computer Speech & Language, vol.23, no.1, pp.107–125, 2009. doi: 10.1016/j.csl.2008.04.001
|
[26] |
L. Xiang, W. Wu, X. Li, et al., “A linguistic steganography based on word indexing compression and candidate selection,” Multimedia Tools and Applications, vol.77, no.26, pp.28969–28989, 2018. doi: 10.1007/s11042-018-6072-8
|
[27] |
F. Z. Dai and Z. Cai, “Towards near-imperceptible steganographic text,” in Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL), Florence, Italy, pp.4303–4308, 2019..
|
[28] |
Z. M. Ziegler, Y. Deng, and A. M. Rush, “Neural linguistic steganography,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp.1210–1215, 2019.
|
[29] |
X. Zhou, W. Peng, B. Yang, et al., “Linguistic steganography based on adaptive probability distribution,” IEEE Transactions on Dependable and Secure Computing, vol.19, no.5, pp.2982–2997, 2022. doi: 10.1109/TDSC.2021.3079957
|
[30] |
B. Yang, W. Peng, Y. Xue, et al., “A Generation-based Text Steganography by Maintaining Consistency of Probability Distribution,” KSII Transactions on Internet and Information Systems, vol.15, no.11, pp.4184–4202, 2021. doi: 10.3837/tiis.2021.11.017
|
[31] |
B. Yi, H. Wu, G. Feng, et al., “ALiSa: Acrostic linguistic steganography based on BERT and Gibbs sampling,” IEEE Signal Processing Letters, vol.29, no.4, pp.687–691, 2022. doi: 10.1109/LSP.2022.3152126
|
[32] |
G. Deepthi, N. V.SriLakshmi, P. Mounika, et al., “Linguistic steganography based on automatically generated paraphrases using recurrent neural networks,” Mobile Computing and Sustainable Informatics, vol.68, no.1, pp.723–732, 2022.
|
[33] |
C. M. Taskiran, U. Topkara, M. Topkara, et al., “Attacks on lexical natural language steganography systems,” in Proceedings of SPIE 6072, Security, Steganography, and Watermarking of Multimedia Contents VⅢ, SPIE, article no.607209, 2006.
|
[34] |
Z. Chen, L. Huang, H. Miao, et al., “Steganalysis against substitution-based linguistic steganography based on context clusters,” Computers Electrical Engineering, vol.37, no.6, pp.1071–1081, 2011. doi: 10.1016/j.compeleceng.2011.07.004
|
[35] |
X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, USA, pp.315–323, 2011.
|
[36] |
N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol.15, no.1, pp.1929–1958, 2014.
|
[37] |
T. Lin, M. Maire, S. J. Belongie, et al., “Microsoft COCO: Common objects in context,” in Proceedings of 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, pp.740–755, 2014.
|
[38] |
A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,” available at: https://cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf, 2009.
|
[39] |
A. L. Maas, R. E. Daly, P. T. Pham, et al., “Learning word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, pp.142–150, 2011.
|
[40] |
Kaggle, “All the news,” available at: https://www.kaggle.com/snapcrack/all-the-news/data, 2017-8-20.
|
[41] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, pp.1–15, 2015.
|
[42] |
Z. Yang, S. Zhang, Y. Hu, et al., “VAE-Stega: Linguistic steganography based on variational auto-encoder,” IEEE Trans. Inf. Forensics Secur., vol.16, no.1, pp.880–895, 2021. doi: 10.1109/TIFS.2020.3023279
|