Citation: | LI Xingwang, GAO Xuesong, LIU Yingting, et al., “Overlay CR-NOMA Assisted Intelligent Transportation System Networks with Imperfect SIC and CEEs,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1258-1270, 2023, doi: 10.23919/cje.2022.00.071 |
[1] |
J. H. Zhao, X. K. Sun, Q. P. Li, et al., “Edge caching and computation management for real-time internet of vehicles: an online and distributed approach,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.4, pp.2183–2197, 2021. doi: 10.1109/TITS.2020.3012966
|
[2] |
H. H. Yang, J. C. Shang , J. J. Li, et al., “Multi-traffic targets tracking based on an improved structural sparse representation with spatial-temporal constraint,” Chinese Journal of Electronics, vol.31, no.2, pp.266–276, 2022. doi: 10.1049/cje.2020.00.007
|
[3] |
Y. K. Zheng, X. W. Li, H. Zhang, et al., “Overlay cognitive ABCom-NOMA-Based ITS: an in-depth secrecy analysis,” IEEE Transactions on Intelligent Transportation Systems, vol.24, no.2, pp.2217–2228, 2023. doi: 10.1109/TITS.2022.3140325
|
[4] |
M. Y. Wang, Y. Lin, Q. Tian, et al., “Transfer learning promotes 6G wireless communications: recent advances and future challenges,” IEEE Transactions on Reliability, vol.70, no.2, pp.790–807, 2021. doi: 10.1109/TR.2021.3062045
|
[5] |
G. Y. Liu, Y. H. Huang, N. Li, et al., “Vision, requirements and network architecture of 6G mobile network beyond 2030,” China Communications, vol.17, no.9, pp.92–104, 2020. doi: 10.23919/JCC.2020.09.008
|
[6] |
M. Chen and Y. Q. Yang, “Iterative interference cancellation for non-orthogonal multiple access system,” Chinese Journal of Electronics, vol.29, no.3, pp.540–546, 2020. doi: 10.1049/cje.2020.03.009
|
[7] |
Z. G. Ding, P. Z. Fan, G. K. Karagiannidis, et al., “NOMA assisted wireless caching: strategies and performance analysis,” IEEE Transactions on Communications, vol.66, no.10, pp.4854–4876, 2018. doi: 10.1109/TCOMM.2018.2841929
|
[8] |
Z. Y. Xu, Z. G. Sun , L. L. Guo, et al., “Joint spectrum sensing and spectrum access for defending massive SSDF attacks: A novel defense framework,” Chinese Journal of Electronics, vol.31, no.2, pp.240–254, 2022. doi: 10.1049/cje.2021.00.090
|
[9] |
Y. Z. Tan and B. R. Chen, “Joint channel estimation and power allocation for the CRS-NOMA,” Chinese Journal of Electronics, vol.29, no.1, pp.177–182, 2020.
|
[10] |
S. Arzykulov, T. A. Tsiftsis, G. Nauryzbayev, et al., “Outage performance of cooperative underlay CR-NOMA with imperfect CSI,” IEEE Communications Letters, vol.23, no.1, pp.176–179, 2019. doi: 10.1109/LCOMM.2018.2878730
|
[11] |
L. Bai, L. N. Zhu, Q. Yu, et al., “Transmit power minimization for vector-perturbation based NOMA Systems: a sub-optimal beamforming approach,” IEEE Transactions on Wireless Communications, vol.18, no.5, pp.2679–2692, 2019. doi: 10.1109/TWC.2019.2906909
|
[12] |
M. S. Van Nguyen, D. T. Do, S. Al-Rubaye, et al., “Exploiting impacts of antenna selection and energy harvesting for massive network connectivity,” IEEE Transactions on Communications, vol.69, no.11, pp.7587–7602, 2021. doi: 10.1109/TCOMM.2021.3106099
|
[13] |
Z. Yang, Z. G. Ding, P. Z. Fan, et al., “On the performance of non-orthogonal multiple access systems with partial channel information,” IEEE Transactions on Communications, vol.64, no.2, pp.654–667, 2016. doi: 10.1109/TCOMM.2015.2511078
|
[14] |
H. C. Lu, X. D. Jiang, and C. W. Chen, “Distortion-aware cross-layer power allocation for video transmission over multi-user NOMA systems,” IEEE Transactions on Wireless Communications, vol.20, no.2, pp.1076–1092, 2021. doi: 10.1109/TWC.2020.3030785
|
[15] |
D. T. Do, A. T. Le, Y. W. Liu, et al., “User grouping and energy harvesting in UAV-NOMA system with AF/DF relaying,” IEEE Transactions on Vehicular Technology, vol.70, no.11, pp.11855–11868, 2021. doi: 10.1109/TVT.2021.3116101
|
[16] |
G. Li, H. L. Liu, G. J. Huang, et al., “Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network,” EURASIP Journal on Wireless Communications and Networking, vol.2021, no.1, article no.198, 2021. doi: 10.1186/s13638-021-02070-7
|
[17] |
W. J. Xu, X. Li, C. H. Lee, et al., “Joint sensing duration adaptation, user matching, and power allocation for cognitive OFDM-NOMA Systems,” IEEE Transactions on Wireless Communications, vol.17, no.2, pp.1269–1282, 2018. doi: 10.1109/TWC.2017.2777476
|
[18] |
Z. Shi, C. M. Zhang, Y. R. Fu, et al., “Achievable diversity order of HARQ-Aided downlink NOMA systems,” IEEE Transactions on Vehicular Technology, vol.69, no.1, pp.471–487, 2020. doi: 10.1109/TVT.2019.2950067
|
[19] |
F. Lin, Z. Hu, S. J. Hou, et al., “Cognitive radio network as wireless sensor network (II): security consideration,” in Proceedings of 2011 IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, pp.324–328, 2011.
|
[20] |
H. Li, W. J. Zhao, C. Liu, et al., “A novel goodness of fit test spectrum sensing using extreme eigenvalues,” Chinese Journal of Electronics, vol.29, no.6, pp.1201–1206, 2020. doi: 10.1049/cje.2020.10.007
|
[21] |
S. Singh and M. Bansal,, “On the outage performance of overlay cognitive STBC-NOMA system with imperfect SIC,” IEEE Wireless Communications Letters, vol.10, no.11, pp.2587–2591, 2021. doi: 10.1109/LWC.2021.3109444
|
[22] |
P. Das and N. B. Mehta, “Direct link-aware optimal relay selection and a low feedback variant for underlay CR,” IEEE Transactions on Communications, vol.63, no.6, pp.2044–2055, 2015. doi: 10.1109/TCOMM.2015.2432026
|
[23] |
X. W. Li, Y. K. Zheng, M. D. Alshehri, et al., “Cognitive AmBC-NOMA IoV-MTS networks with IQI: reliability and security analysis,” IEEE Transactions on Intelligent Transportation Systems, vol.24, no.2, pp.2596–2607, 2023. doi: 10.1109/TITS.2021.3113995
|
[24] |
M. C. Filippou, D. Gesbert, and G. A. Ropokis, “A comparative performance analysis of interweave and underlay multi-antenna cognitive radio networks,” IEEE Transactions on Wireless Communications, vol.14, no.5, pp.2911–2925, 2015. doi: 10.1109/TWC.2015.2396519
|
[25] |
S. H. Wang, C. Y. Hsu, and Y. W. P. Hong, “Distributed exploitation of spectrum and channel state information for channel reservation and selection in interweave cognitive radio networks,” IEEE Transactions on Wireless Communications, vol.12, no.7, pp.3458–3472, 2013. doi: 10.1109/TWC.2013.060313.121676
|
[26] |
C. Lameiro, I. Santamaría, P. J. Schreier, et al., “Maximally improper signaling in underlay MIMO cognitive radio networks,” IEEE Transactions on Signal Processing, vol.67, no.24, pp.6241–6255, 2019. doi: 10.1109/TSP.2019.2953665
|
[27] |
A. Alizadeh, H. R. Bahrami, and M. Maleki, “Performance analysis of spatial modulation in overlay cognitive radio communications,” IEEE Transactions on Communications, vol.64, no.8, pp.3220–3232, 2016. doi: 10.1109/TCOMM.2016.2581817
|
[28] |
S. Kashyap and N. B. Mehta, “SEP-optimal transmit power policy for peak power and interference outage probability constrained underlay cognitive radios,” IEEE Transactions on Wireless Communications, vol.12, no.12, pp.6371–6381, 2013. doi: 10.1109/TWC.2013.111013.130615
|
[29] |
J. H. Zhao, S. J. Ni, L. H. Yang, et al., “Multiband cooperation for 5G HetNets: a promising network paradigm,” IEEE Vehicular Technology Magazine, vol.14, no.4, pp.85–93, 2019. doi: 10.1109/MVT.2019.2935793
|
[30] |
Y. W. Liu, Z. G. Ding, M. Elkashlan, et al., “Nonorthogonal multiple access in large-scale underlay cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol.65, no.12, pp.10152–10157, 2016. doi: 10.1109/TVT.2016.2524694
|
[31] |
L. W. Wei, T. Jing, X. Fan, et al., “The secrecy analysis over physical layer in NOMA-enabled cognitive radio networks,” in Proceedings of 2018 IEEE International Conference on Communications, Kansas City, MO, USA, pp.1–6, 2018.
|
[32] |
L. Bariah, S. Muhaidat, and A. Al-Dweik, “Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints,” IEEE Transactions on Communications, vol.68, no.2, pp.765–777, 2020. doi: 10.1109/TCOMM.2019.2921360
|
[33] |
L. Lv, L. Yang, H. Jiang, et al., “When NOMA meets multiuser cognitive radio: opportunistic cooperation and user scheduling,” IEEE Transactions on Vehicular Technology, vol.67, no.7, pp.6679–6684, 2018. doi: 10.1109/TVT.2018.2805638
|
[34] |
A. H. Bastami, “NOMA-based spectrum leasing in cognitive radio network: power optimization and performance analysis,” IEEE Transactions on Communications, vol.69, no.7, pp.4821–4831, 2021. doi: 10.1109/TCOMM.2021.3069866
|
[35] |
H. F. Shuai, K. F. Guo, K. An, et al., “NOMA-based integrated satellite terrestrial networks with relay selection and imperfect SIC,” IEEE Access, vol.9, pp.111346–111357, 2021. doi: 10.1109/ACCESS.2021.3103944
|
[36] |
X. M. Chen, R. D. Jia, and D. W. K. Ng, “On the design of massive non-orthogonal multiple access with imperfect successive interference cancellation,” IEEE Transactions on Communications, vol.67, no.3, pp.2539–2551, 2019. doi: 10.1109/TCOMM.2018.2884476
|
[37] |
X. M. Chen and C. Yuen, “On interference alignment with imperfect CSI: characterizations of outage probability, Ergodic rate and SER,” IEEE Transactions on Vehicular Technology, vol.65, no.1, pp.47–58, 2016. doi: 10.1109/TVT.2015.2397000
|
[38] |
T. H. Yang, R. Q. Zhang, X. Cheng, et al., “Secure massive MIMO under imperfect CSI: performance analysis and channel prediction,” IEEE Transactions on Information Forensics and Security, vol.14, no.6, pp.1610–1623, 2019. doi: 10.1109/TIFS.2018.2883150
|
[39] |
W. U. Khan, X. W. Li, A. Ihsan, et al., “NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding,” IEEE Transactions on Intelligent Transportation Systems, vol.23, no.11, pp.22442–22451, 2022. doi: 10.1109/TITS.2021.3091402
|
[40] |
M. W. Akhtar, S. A. Hassan, S. Saleem, et al., “STBC-aided cooperative NOMA with timing offsets, imperfect successive interference cancellation, and imperfect channel state information,” IEEE Transactions on Vehicular Technology, vol.69, no.10, pp.11712–11727, 2020. doi: 10.1109/TVT.2020.3017249
|
[41] |
Y. S. Sun, Z. G. Ding, and X. C. Dai, “On the outage performance of network NOMA (N-NOMA) modeled by Poisson line cox point process,” IEEE Transactions on Vehicular Technology, vol.70, no.8, pp.7936–7950, 2021. doi: 10.1109/TVT.2021.3095350
|
[42] |
H. Xiao, H. Jiang, F. R. Shi, et al., “Energy-efficient resource allocation in radio-frequency-powered cognitive radio network for connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.8, pp.5426–5436, 2021. doi: 10.1109/TITS.2020.3026746
|
[43] |
Z. Yang, J. A. Hussein, P. Xu, et al., “Performance study of cognitive relay NOMA networks with dynamic power transmission,” IEEE Transactions on Vehicular Technology, vol.70, no.3, pp.2882–2887, 2021. doi: 10.1109/TVT.2021.3060127
|
[44] |
B. Li, X. H. Qi, K. Z. Huang, et al., “Security-reliability tradeoff analysis for cooperative NOMA in cognitive radio networks,” IEEE Transactions on Communications, vol.67, no.1, pp.83–96, 2019. doi: 10.1109/TCOMM.2018.2873690
|
[45] |
L. P. Luo, Q. Z. Li, and J. L. Cheng, “Performance analysis of overlay cognitive NOMA systems with imperfect successive interference cancellation,” IEEE Transactions on Communications, vol.68, no.8, pp.4709–4722, 2020. doi: 10.1109/TCOMM.2020.2992471.(查阅网上资料,本条与第18条文献重复,请确认)
|
[46] |
A. V. and B. A. V., “Performance analysis of NOMA-based underlay cognitive radio networks with partial relay selection,” IEEE Transactions on Vehicular Technology, vol.70, no.5, pp.4615–4630, 2021. doi: 10.1109/TVT.2021.3071338
|
[47] |
D. T. Do, T. A. Le, T. N. Nguyen, et al., “Joint impacts of imperfect CSI and imperfect SIC in cognitive radio-assisted NOMA-V2X communications,” IEEE Access, vol.8, pp.128629–128645, 2020. doi: 10.1109/ACCESS.2020.3008788
|
[48] |
D. T. Do, M. S. van Nguyen, M. Voznak, et al., “Performance analysis of clustering car-following V2X system with wireless power transfer and massive connections,” IEEE Internet of Things Journal, vol.9, no.16, pp.14610–14628, 2022. doi: 10.1109/JIOT.2021.3070744
|
[49] |
X. W. Li, Q. S. Wang, M. Liu, et al., “Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors,” IEEE Internet of Things Journal, vol.8, no.7, pp.5453–5467, 2021. doi: 10.1109/JIOT.2020.3029754
|
[50] |
X. W. Li, J. J. Li, Y. W. Liu, et al., “Residual transceiver hardware impairments on cooperative NOMA networks,” IEEE Transactions on Wireless Communications, vol.19, no.1, pp.680–695, 2020. doi: 10.1109/TWC.2019.2947670
|
[51] |
Q. Q. Zhang, L. Zhang, Y. C. Liang, et al., “Backscatter-NOMA: a symbiotic system of cellular and internet-of-things networks,” IEEE Access, vol.7, pp.20000–20013, 2019. doi: 10.1109/ACCESS.2019.2897822
|