Overlay CR-NOMA Assisted Intelligent Transportation System Networks with Imperfect SIC and CEEs
-
Abstract
With the development of the mobile communication and intelligent information technologies, the intelligent transportation systems driven by the sixth generation (6G) has many opportunities to achieve ultra-low latency and higher data transmission rate. Nonetheless, it also faces the great challenges of spectral resource shortage and large-scale connection. To solve the above problems, non-orthogonal multiple access (NOMA) and cognitive radio (CR) technologies have been proposed. In this regard, we study the reliable and ergodic performance of CR-NOMA assisted intelligent transportation system networks in the presence of imperfect successive interference cancellation (SIC) and non-ideal channel state information. Specifically, the analytical expressions of the outage probability (OP) and ergodic sum rate (ESR) are derived through a string of calculations. In order to gain more insights, the asymptotic expressions for OP and ESR at high signal-to-noise ratio (SNR) regimes are discussed. We verify the accuracy of the analysis by Monte Carlo simulations, and the results show: i) Imperfect SIC and channel estimation errors (CEEs) have negative impacts on the OP and ESR; ii) The OP decreases with the SNR increasing until convergence to a fixed constant at high SNR regions; iii) The ESR increases with increasing SNR and there exists a ceiling in the high SNR region.
-
-