Citation: | Xiaojuan LIAN, Yuelin SHI, Xinyi SHEN, et al., “Design of High Performance MXene/Oxide Structure Memristors for Image Recognition Applications,” Chinese Journal of Electronics, vol. 33, no. 2, pp. 336–345, 2024 doi: 10.23919/cje.2022.00.125 |
[1] |
S. M. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285, 2018. doi: 10.1109/JPROC.2018.2790840
|
[2] |
Y. Li, T. Guo, X. Liu, et al., “Action status based novel relative feature representations for interaction recognition,” Chinese Journal of Electronics, vol. 31, no. 1, pp. 168–180, 2022. doi: 10.1049/cje.2020.00.088
|
[3] |
Q. Ma, X. Zhang, C. Zhang, et al., “Hyperspectral image classification based on capsule network,” Chinese Journal of Electronics, vol. 31, no. 1, pp. 146–154, 2022. doi: 10.1049/cje.2021.00.056
|
[4] |
G. Chen, J. H. Liu, and Y. Y. Niu, “Intracranial epileptic seizures detection based on an optimized neural network classifier,” Chinese Journal of Electronics, vol. 30, no. 3, pp. 419–425, 2021. doi: 10.1049/cje.2021.03.005
|
[5] |
A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE Access, vol. 7, pp. 53040–53065, 2019. doi: 10.1109/ACCESS.2019.2912200
|
[6] |
V. Monga, Y. L. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021. doi: 10.1109/MSP.2020.3016905
|
[7] |
P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014. doi: 10.1126/science.1254642
|
[8] |
P. Yao, H. Q. Wu, B. Gao, et al., “Fully hardware-implemented memristor convolutional neural network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020. doi: 10.1038/s41586-020-1942-4
|
[9] |
X. Y. Peng, J. X. Yu, B. W. Yao, et al., “A review of FPGA-based custom computing architecture for convolutional neural network inference,” Chinese Journal of Electronics, vol. 30, no. 1, pp. 1–17, 2021. doi: 10.1049/cje.2020.11.002
|
[10] |
M. Zhang, Z. H. Gu, and G. Pan, “A survey of neuromorphic computing based on spiking neural networks,” Chinese Journal of Electronics, vol. 27, no. 4, pp. 667–674, 2018. doi: 10.1049/cje.2018.05.006
|
[11] |
H. Al-Bustami, G. Koplovitz, D. Primc, et al., “Single nanoparticle magnetic spin memristor,” Small, vol. 14, no. 30, article no. 1801249, 2018. doi: 10.1002/smll.201801249
|
[12] |
T. Shibata, T. Shinohara, T. Ashida, et al., “Linear and symmetric conductance response of magnetic domain wall type spin-memristor for analog neuromorphic computing,” Applied Physics Express, vol. 13, no. 4, article no. 043004, 2020. doi: 10.35848/1882-0786/ab7e07
|
[13] |
N. Yang, Z. Q. Ren, C. Z. Hu, et al., “Ultra-wide temperature electronic synapses based on self-rectifying ferroelectric memristors,” Nanotechnology, vol. 30, no. 46, article no. 464001, 2019. doi: 10.1088/1361-6528/ab3c3d
|
[14] |
S. Boyn, J. Grollier, G. Lecerf, et al., “Learning through ferroelectric domain dynamics in solid-state synapses,” Nature Communications, vol. 8, no. 1, article no. 14736, 2017. doi: 10.1038/ncomms14736
|
[15] |
D. Kuzum, R. G. D. Jeyasingh, B. Lee, et al., “Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing,” Nano Letters, vol. 12, no. 5, pp. 2179–2186, 2012. doi: 10.1021/nl201040y
|
[16] |
G. W. Burr, R. M. Shelby, S. Sidler, et al., “Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element,” IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3498–3507, 2015. doi: 10.1109/TED.2015.2439635
|
[17] |
Q. T. Wu, H. Wang, Q. Luo, et al., “Full imitation of synaptic metaplasticity based on memristor devices,” Nanoscale, vol. 10, no. 13, pp. 5875–5881, 2018. doi: 10.1039/C8NR00222C
|
[18] |
S. Ambrogio, S. Balatti, V. Milo, et al., “Neuromorphic learning and recognition with one-transistor-one-resistor synapses and bistable metal oxide RRAM,” IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1508–1515, 2016. doi: 10.1109/TED.2016.2526647
|
[19] |
D. Ielmini, “Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks,” Microelectronic Engineering, vol. 190, pp. 44–53, 2018. doi: 10.1016/j.mee.2018.01.009
|
[20] |
L. Dai, H. Guo, Q. P. Lin, et al., “An in-memory-computing design of multiplier based on multilevel-cell of resistance switching random access memory,” Chinese Journal of Electronics, vol. 27, no. 6, pp. 1151–1157, 2018. doi: 10.1049/cje.2018.08.006
|
[21] |
J. R. Wang, Z. G. Xia, and Z. G. Fei, “Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence,” Science and Technology of Advanced Materials, vol. 22, no. 1, pp. 326–344, 2021. doi: 10.1080/14686996.2021.1911277
|
[22] |
F. M. Bayat, M. Prezioso, B. Chakrabarti, et al., “Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits,” Nature Communications, vol. 9, no. 1, article no. 2331, 2018. doi: 10.1038/s41467-018-04482-4
|
[23] |
X. J. Lian, X. Y. Shen, M. C. Zhang, et al., “Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor,” Applied Physics Letters, vol. 115, no. 6, article no. 063501, 2019. doi: 10.1063/1.5087423
|
[24] |
N. He, Q. Q. Zhang, L. Y. Tao, et al., “V2C-based memristor for applications of low power electronic synapse,” IEEE Electron Device Letters, vol. 42, no. 3, pp. 319–322, 2021. doi: 10.1109/LED.2021.3049676
|
[25] |
X. J. Lian, X. Y. Shen, J. K. Fu, et al., “Electrical properties and biological synaptic simulation of Ag/MXene/SiO2/Pt RRAM devices,” Electronics, vol. 9, no. 12, article no. 2098, 2020. doi: 10.3390/electronics9122098
|
[26] |
Q. Y. Li, Q. Y. Tao, Y. Chen, et al., “Low voltage and robust InSe memristor using van der Waals electrodes integration,” International Journal of Extreme Manufacturing, vol. 3, no. 4, article no. 045103, 2021. doi: 10.1088/2631-7990/ac2296
|
[27] |
D. D. Xie, L. B. Wei, M. Xie, et al., “Photoelectric visual adaptation based on 0D‐CsPbBr3‐quantum‐dots/2D‐MoS2 mixed‐dimensional heterojunction transistor,” Advanced Functional Materials, vol. 31, no. 14, article no. 2010655, 2021. doi: 10.1002/adfm.202010655
|
[28] |
J. Jiang, J. J. Guo, X. Wan, et al., “2D MoS2 neuromorphic devices for brain‐like computational systems,” Small, vol. 13, no. 29, article no. 1700933, 2017. doi: 10.1002/smll.201700933
|
[29] |
W. D. Song, Q. Liu, J. X. Chen, et al., “Interface engineering Ti3C2 MXene/silicon self-powered photodetectors with high responsivity and detectivity for weak light applications,” Small, vol. 17, no. 23, article no. 2100439, 2021. doi: 10.1002/smll.202100439
|
[30] |
H. Ma, L. Jia, Y. Lin, et al., “A self-powered photoelectrochemical ultraviolet photodetector based on Ti3C2Tx/TiO2 in situ formed heterojunctions,” Nanotechnology, vol. 33, no. 7, article no. 075502, 2021. doi: 10.1088/1361-6528/ac0eaa
|
[31] |
M. C. Zhang, Y. Q. Wang, F. Gao, et al., “Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device,” Ceramics International, vol. 45, no. 15, pp. 19467–19472, 2019. doi: 10.1016/j.ceramint.2019.06.202
|
[32] |
K. Wang, Y. F. Zhou, W. T. Xu, et al., “Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets,” Ceramics International, vol. 42, no. 7, pp. 8419–8424, 2016. doi: 10.1016/j.ceramint.2016.02.059
|
[33] |
A. H. Feng, Y. Yu, Y. Wang, et al., “Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2,” Materials & Design, vol. 114, pp. 161–166, 2017. doi: 10.1016/j.matdes.2016.10.053
|
[34] |
Y. M. Sun, C. Song, J. Yin, et al., “Guiding the growth of a conductive filament by nanoindentation to improve resistive switching,” ACS Applied Materials & Interfaces, vol. 9, no. 39, pp. 34064–34070, 2017. doi: 10.1021/acsami.7b09710
|
[35] |
Y. T. Li, L. J. Yin, Z. W. Wu, et al., “Improved resistive switching uniformity of SiO2 electrolyte-based resistive random access memory device with Cu oxidizable electrode,” IEEE Electron Device Letters, vol. 40, no. 10, pp. 1599–1601, 2019. doi: 10.1109/LED.2019.2934145
|
[36] |
B. L. Jackson, B. Rajendran, G. S. Corrado, et al., “Nanoscale electronic synapses using phase change devices,” ACM Journal on Emerging Technologies in Computing Systems, vol. 9, no. 2, article no. 12, 2013. doi: 10.1145/2463585.2463588
|
[37] |
P. Y. Chen, X. C. Peng, and S. M. Yu, “NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, 2018. doi: 10.1109/TCAD.2018.2789723
|
[38] |
J. T. Jang, J. Min, Y. Hwang, et al., “Digital and analog switching characteristics of InGaZnO memristor depending on top electrode material for neuromorphic system,” IEEE Access, vol. 8, pp. 192304–192311, 2020. doi: 10.1109/ACCESS.2020.3032188
|
[39] |
B. Delley, “From molecules to solids with the DMol3 approach,” The Journal of Chemical Physics, vol. 113, no. 18, pp. 7756–7764, 2000. doi: 10.1063/1.1316015
|
[40] |
B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” The Journal of Chemical Physics, vol. 92, no. 1, pp. 508–517, 1990. doi: 10.1063/1.458452
|
[41] |
P. Y. Chen, X. C. Peng, and S. M. Yu, “NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures,” 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp.6.1.1–6.1.4, 2017.
|
[42] |
P. Y. Chen and S. M. Yu, “Technological benchmark of analog synaptic devices for neuroinspired architectures,” IEEE Design & Test, vol. 36, no. 3, pp. 31–38, 2019. doi: 10.1109/MDAT.2018.2890229
|
[43] |
P. Y. Chen, X. C. Peng, and S. M. Yu, “System-level benchmark of synaptic device characteristics for neuro-inspired computing,” 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, CA, USA, pp.1–2, 2017.
|
[44] |
P. Y. Chen and S. M. Yu, “Partition SRAM and RRAM based synaptic arrays for neuro-inspired computing,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, pp.2310–2313, 2016.
|
[45] |
L. X. Xia, B. X. Li, T. Q. Tang, et al., “MNSIM: Simulation platform for memristor-based neuromorphic computing system,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 5, pp. 1009–1022, 2018. doi: 10.1109/TCAD.2017.2729466
|
[46] |
S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint, arXiv: 1609.04747v2, 2016.
|
[47] |
N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1999. doi: 10.1016/S0893-6080(98)00116-6
|
[48] |
T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude,” COURSERA:Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.
|
[49] |
D. P. Kingma and L. J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of the 3rd International Conference on Learning Representations, Ithaca, NY, USA, 2014.
|
[50] |
A. Rodriguez-Fernandez, C. Cagli, L. Perniola, et al., “Characterization of HfO2-based devices with indication of second order memristor effects,” Microelectronic Engineering, vol. 195, pp. 101–106, 2018. doi: 10.1016/j.mee.2018.04.006
|
[51] |
S. H. Jo, T. Chang, I. Ebong, et al., “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4, pp. 1297–1301, 2010. doi: 10.1021/nl904092h
|
[52] |
M. A. Horowitz, “Timing models for MOS circuits,” Ph. D. Thesis, Stanford University, Stanford, CA, USA, 1984.
|
[53] |
X. Y. Dong, C. Xu, Y. Xie, et al., “NVSim: A circuit-level performance, energy, and area model for emerging nonvolatile memory,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–1007, 2012. doi: 10.1109/TCAD.2012.2185930
|