Citation: | Ling LIU, Maoxiang CHU, Rongfen GONG, et al., “Weighted Linear Loss Large Margin Distribution Machine for Pattern Classification,” Chinese Journal of Electronics, vol. 33, no. 3, pp. 753–765, 2024 doi: 10.23919/cje.2022.00.156 |
[1] |
V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999. doi: 10.1109/72.788640
|
[2] |
A. Dixit, A. Mani, and R. Bansal, “CoV2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images,” Information Sciences, vol. 571, pp. 676–692, 2021. doi: 10.1016/j.ins.2021.03.062
|
[3] |
P. Negri, S. Cumani, and A. Bottino, “Tackling age-invariant face recognition with non-linear PLDA and pairwise SVM,” IEEE Access, vol. 9, pp. 40649–40664, 2021. doi: 10.1109/ACCESS.2021.3063819
|
[4] |
M. B. Abidine and B. Fergani, “Activity recognition from smartphone data using weighted learning methods,” Intelligenza Artificiale, vol. 15, no. 1, pp. 1–15, 2021. doi: 10.3233/IA-200059
|
[5] |
S. Mehrkanoon, X. L. Huang, and J. A. K. Suykens, “Non-parallel support vector classifiers with different loss functions,” Neurocomputing, vol. 143, pp. 294–301, 2014. doi: 10.1016/j.neucom.2014.05.063
|
[6] |
C. F. Lin and S. D. Wang, “Fuzzy support vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 464–471, 2002. doi: 10.1109/72.991432
|
[7] |
L. Tang, Y. J. Tian, and P. M. Pardalos, “A novel perspective on multiclass classification: Regular simplex support vector machine,” Information Sciences, vol. 480, pp. 324–338, 2019. doi: 10.1016/j.ins.2018.12.026
|
[8] |
X. L. Yang, Q. Song, and Y. Wang, “A weighted support vector machine for data classification,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 21, no. 5, pp. 961–976, 2007. doi: 10.1142/S0218001407005703
|
[9] |
L. Reyzin and R. E. Schapire, “How boosting the margin can also boost classifier complexity,” in Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, pp. 753–760, 2006.
|
[10] |
W. Gao and Z. H. Zhou, “On the doubt about margin explanation of boosting,” Artificial Intelligence, vol. 203, pp. 1–18, 2013. doi: 10.1016/j.artint.2013.07.002
|
[11] |
Z. H. Zhou, “Large margin distribution learning,” in Proceedings of the 6th IAPR Workshop on Artificial Neural Networks in Pattern Recognition, Montreal, Canada, pp. 1–11, 2014.
|
[12] |
T. Zhang and Z. H. Zhou, “Large margin distribution machine,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 313–322, 2014.
|
[13] |
L. M. Liu, M. X. Chu, R. F. Gong, et al., “Nonparallel support vector machine with large margin distribution for pattern classification,” Pattern Recognition, vol. 106, pp. 107374, 2020. doi: 10.1016/j.patcog.2020.107374
|
[14] |
F. Y. Cheng, J. Zhang, Z. Y. Li, et al., “Double distribution support vector machine,” Pattern Recognition Letters, vol. 88, pp. 20–25, 2017. doi: 10.1016/j.patrec.2017.01.010
|
[15] |
U. Gupta and D. Gupta, “Least squares large margin distribution machine for regression,” Applied Intelligence, vol. 51, no. 10, pp. 7058–7093, 2021. doi: 10.1007/s10489-020-02166-5
|
[16] |
J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999. doi: 10.1023/A:1018628609742
|
[17] |
Jayadeva, R. Khemchandani, and S. Chandra, “Twin support vector machines for pattern classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 5, pp. 905–910, 2007. doi: 10.1109/TPAMI.2007.1068
|
[18] |
Y. H. Shao, Z. Wang, Z. M. Yang, et al., “Weighted linear loss support vector machine for large scale problems,” Procedia Computer Science, vol. 31, pp. 639–647, 2014. doi: 10.1016/j.procs.2014.05.311
|
[19] |
Y. H. Shao, W. J. Chen, Z. Wang, et al., “Weighted linear loss twin support vector machine for large-scale classification,” Knowledge-Based Systems, vol. 73, pp. 276–288, 2015. doi: 10.1016/j.knosys.2014.10.011
|
[20] |
S. Abe, “Unconstrained large margin distribution machines,” Pattern Recognition Letters, vol. 98, pp. 96–102, 2017. doi: 10.1016/j.patrec.2017.09.005
|
[21] |
B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2002.
|
[22] |
T. Zhang and Z. H. Zhou, “Optimal margin distribution machine,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 6, pp. 1143–1156, 2020. doi: 10.1109/TKDE.2019.2897662
|
[23] |
D. Dua and C. Graff, “UCI machine learning repository,” Available at: http://archive.ics.uci.edu/ml.
|
[24] |
D. R. Musicant, “NDC: Normally distributed clustered datasets,” Available at: http://www.cs.wisc.edu/dmi/svm/ndc.
|
[25] |
Y. Q. Bao, K. C. Song, J. Liu, et al., “Triplet-graph reasoning network for few-shot metal generic surface defect segmentation,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 5011111, 2021. doi: 10.1109/TIM.2021.3083561
|
[26] |
Y. He, K. C. Song, Q. G. Meng, et al., “An end-to-end steel surface defect detection approach via fusing multiple hierarchical features,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 4, pp. 1493–1504, 2020. doi: 10.1109/TIM.2019.2915404
|
[27] |
B. Fei and J. B. Liu, “Binary tree of SVM: A new fast multiclass training and classification algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 696–704, 2006. doi: 10.1109/TNN.2006.872343
|
[28] |
J. Liu and Y. B. Xu, “T-friedman test: A new statistical test for multiple comparison with an adjustable conservativeness measure,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, pp. 29, 2022. doi: 10.1007/s44196-022-00083-8
|
[29] |
A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc tests based on mean-ranks?,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 152–161, 2016.
|
[30] |
C. H. Lin, J. S. Tsai, and C. T. Chiu, “Switching bilateral filter with a texture/noise detector for universal noise removal,” IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2307–2320, 2010. doi: 10.1109/TIP.2010.2047906
|
[31] |
Z. Y. He and L. N. Sun, “Surface defect detection method for glass substrate using improved Otsu segmentation,” Applied Optics, vol. 54, no. 33, pp. 9823–9830, 2015. doi: 10.1364/AO.54.009823
|
[32] |
M. X. Chu, R. F. Gong, S. Gao, et al., “Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine,” Chemometrics and Intelligent Laboratory Systems, vol. 171, pp. 140–150, 2017. doi: 10.1016/j.chemolab.2017.10.020
|