Citation: | Saiqin LONG, Cong WANG, Weifan LONG, et al., “An Efficient Task Scheduling Algorithm in the Cloud and Edge Collaborative Environment,” Chinese Journal of Electronics, vol. 33, no. 5, pp. 1296–1307, 2024 doi: 10.23919/cje.2022.00.223 |
[1] |
P. Lai, Q. He, J. Grundy, et al., “Cost-effective app user allocation in an edge computing environment,” IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1701–1713, 2022. doi: 10.1109/TCC.2020.3001570
|
[2] |
I. M. Ibrahim, S. R. M. Zeebaree, M. A. M. Sadeeq, et al., “Task scheduling algorithms in cloud computing: A review,” Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 4, pp. 1041–1053, 2021. doi: 10.17762/turcomat.v12i4.612
|
[3] |
F. Y. Hu, L. L. Lv, T. L. Zhang, et al., “Vehicular task scheduling strategy with resource matching computing in cloud-edge collaboration,” IET Collaborative Intelligent Manufacturing, vol. 3, no. 4, pp. 334–344, 2021. doi: 10.1049/cim2.12023
|
[4] |
J. J. Guo, C. L. Li, Y. Chen, et al., “On-demand resource provision based on load estimation and service expenditure in edge cloud environment,” Journal of Network and Computer Applications, vol. 151, article no. 102506, 2020. doi: 10.1016/j.jnca.2019.102506
|
[5] |
J. Schmitt, J. Bönig, T. Borggräfe, et al., “Predictive model-based quality inspection using machine learning and edge cloud computing,” Advanced Engineering Informatics, vol. 45, article no. 101101, 2020. doi: 10.1016/j.aei.2020.101101
|
[6] |
P. F. Hu, S. Dhelim, H. S. Ning, et al., “Survey on fog computing: Architecture, key technologies, applications and open issues,” Journal of Network and Computer Applications, vol. 98, pp. 27–42, 2017. doi: 10.1016/j.jnca.2017.09.002
|
[7] |
S. Z. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading,” IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 4177–4190, 2018. doi: 10.1109/TWC.2018.2821664
|
[8] |
X. F. Cao, G. M. Tang, D. K. Guo, et al., “Edge federation: Towards an integrated service provisioning model,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1116–1129, 2020. doi: 10.1109/TNET.2020.2979361
|
[9] |
Y. M. Miao, G. X. Wu, M. Li, et al., “Intelligent task prediction and computation offloading based on mobile-edge cloud computing,” Future Generation Computer Systems, vol. 102, pp. 925–931, 2020. doi: 10.1016/j.future.2019.09.035
|
[10] |
H. Yuan, G. M. Tang, X. Y. Li, et al., “Online dispatching and fair scheduling of edge computing tasks: A learning-based approach,” IEEE Internet of Things Journal, vol. 8, no. 19, pp. 14985–14998, 2021. doi: 10.1109/JIOT.2021.3073034
|
[11] |
J. H. Zhao, Q. P. Li, Y. Gong, et al., “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019. doi: 10.1109/TVT.2019.2917890
|
[12] |
X. L. Xu, X. Zhang, X. H. Liu, et al., “Adaptive computation offloading with edge for 5g-envisioned internet of connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5213–5222, 2021. doi: 10.1109/TITS.2020.2982186
|
[13] |
X. Zheng, M. C. Li, and J. Guo, “Task scheduling using edge computing system in smart city,” International Journal of Communication Systems, vol. 34, no. 6, article no. e4422, 2021. doi: 10.1002/dac.4422
|
[14] |
J. Edinger, M. Breitbach, N. Gabrisch, et al., “Decentralized low-latency task scheduling for Ad-Hoc computing,” in Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland, OR, USA, pp.776–785, 2021.
|
[15] |
Y. X. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2637–2646, 2017. doi: 10.1109/JSAC.2017.2760160
|
[16] |
T. Q. Dinh, Q. D. La, T. Q. S. Quek, et al., “Learning for computation offloading in mobile edge computing,” IEEE Transactions on Communications, vol. 66, no. 12, pp. 6353–6367, 2018. doi: 10.1109/TCOMM.2018.2866572
|
[17] |
X. L. Xu, Y. C. Li, T. Huang, et al., “An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks,” Journal of Network and Computer Applications, vol. 133, pp. 75–85, 2019. doi: 10.1016/j.jnca.2019.02.008
|
[18] |
H. L. Zhang, J. Guo, L. C. Yang, et al., “Computation offloading considering fronthaul and backhaul in small-cell networks integrated with MEC,” in Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, pp.115–120, 2017.
|
[19] |
L. C. Yang, H. L. Zhang, M. Li, et al., “Mobile edge computing empowered energy efficient task offloading in 5G,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6398–6409, 2018. doi: 10.1109/TVT.2018.2799620
|
[20] |
S. Q. Long, W. F. Long, Z. T. Li, et al., “A game-based approach for cost-aware task assignment with QoS constraint in collaborative edge and cloud environments,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1629–1640, 2021. doi: 10.1109/TPDS.2020.3041029
|
[21] |
H. S. Tan, Z. H. Han, X. Y. Li, et al., “Online job dispatching and scheduling in edge-clouds,” in Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, pp.1–9, 2017.
|
[22] |
X. Long, J. G. Wu, and L. Chen, “Energy-efficient offloading in mobile edge computing with edge-cloud collaboration,” in Proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing, Guangzhou, China, pp.460–475, 2018.
|
[23] |
M. Z. Du, Y. Wang, K. J. Ye, et al., “Algorithmics of cost-driven computation offloading in the edge-cloud environment,” IEEE Transactions on Computers, vol. 69, no. 10, pp. 1519–1532, 2020. doi: 10.1109/TC.2020.2976996
|
[24] |
K. Y. Liu, J. Peng, H. Li, et al., “Multi-device task offloading with time-constraints for energy efficiency in mobile cloud computing,” Future Generation Computer Systems, vol. 64, pp. 1–14, 2016. doi: 10.1016/j.future.2016.04.013
|
[25] |
H. C. Duan, C. Chen, G. Y. Min, et al., “Energy-aware scheduling of virtual machines in heterogeneous cloud computing systems,” Future Generation Computer Systems, vol. 74, pp. 142–150, 2017. doi: 10.1016/j.future.2016.02.016
|
[26] |
K. K. Gai, M. K. Qiu, and H. Zhao, “Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing,” Journal of Parallel and Distributed Computing, vol. 111, pp. 126–135, 2018. doi: 10.1016/j.jpdc.2017.08.001
|
[27] |
Z. H. Li, X. R. Yu, L. Yu, et al., “Energy-efficient and quality-aware VM consolidation method,” Future Generation Computer Systems, vol. 102, pp. 789–809, 2020. doi: 10.1016/j.future.2019.08.004
|
[28] |
G. Peng, H. M. Wu, H. Wu, et al., “Constrained multiobjective optimization for IoT-enabled computation offloading in collaborative edge and cloud computing,” IEEE Internet of Things Journal, vol. 8, no. 17, pp. 13723–13736, 2021. doi: 10.1109/JIOT.2021.3067732
|
[29] |
S. D. Wang, Y. Q. Li, S. C. Pang, et al., “A task scheduling strategy in edge-cloud collaborative scenario based on deadline,” Scientific Programming, vol. 2020, article no. 3967847, 2020. doi: 10.1155/2020/3967847
|
[30] |
C. S. You, K. B. Huang, and H. Chae, “Energy efficient mobile cloud computing powered by wireless energy transfer,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1757–1771, 2016. doi: 10.1109/JSAC.2016.2545382
|
[31] |
J. K. Ren, G. D. Yu, Y. H. He, et al., “Collaborative cloud and edge computing for latency minimization,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5031–5044, 2019. doi: 10.1109/TVT.2019.2904244
|
[32] |
G. Z. Zhang, T. Q. S. Quek, M. Kountouris, et al., “Fundamentals of heterogeneous backhaul design—analysis and optimization,” IEEE Transactions on Communications, vol. 64, no. 2, pp. 876–889, 2016. doi: 10.1109/TCOMM.2016.2515596
|
[33] |
A. Al-Shuwaili, O. Simeone, A. Bagheri, et al., “Joint uplink/downlink optimization for backhaul-limited mobile cloud computing with user scheduling,” IEEE Transactions on Signal and Information Processing over Networks, vol. 3, no. 4, pp. 787–802, 2017. doi: 10.1109/TSIPN.2017.2668142
|
[34] |
M. Dawande, J. Kalagnanam, P. Keskinocak, et al., “Approximation algorithms for the multiple knapsack problem with assignment restrictions,” Journal of Combinatorial Optimization, vol. 4, no. 2, pp. 171–186, 2000. doi: 10.1023/A:1009894503716
|
[35] |
S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Inc., New York, NY, USA, pp.157-179,1990.
|