Citation: | WANG Chaowei, WANG Ziye, XU Lexi, et al., “Collaborative Caching in Vehicular Edge Network Assisted by Cell-Free Massive MIMO,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1218-1229, 2023, doi: 10.23919/cje.2022.00.294 |
[1] |
W. Bao, C. Wu, S. Guleng, et al., “Edge computing-based joint client selection and networking scheme for federated learning in vehicular IoT,” China Communications, vol.18, no.6, pp.39–52, 2021. doi: 10.23919/JCC.2021.06.004
|
[2] |
Z. Y. Du, C. Wu, T. Yoshinaga, et al., “Federated learning for vehicular internet of things: recent advances and open issues,” IEEE Open Journal of the Computer Society, vol.1, pp.45–61, 2020. doi: 10.1109/OJCS.2020.2992630
|
[3] |
C. Wu, Z. Liu, D. Zhang, et al., “Spatial intelligence toward trustworthy vehicular IoT,” IEEE Communications Magazine, vol.56, no.10, pp.22–27, 2018. doi: 10.1109/MCOM.2018.1800089
|
[4] |
H. B. Zhou, W. C. Xu, J. C. Chen, et al., “Evolutionary V2X technologies toward the internet of vehicles: challenges and opportunities,” Proceedings of the IEEE, vol.108, no.2, pp.308–323, 2020. doi: 10.1109/JPROC.2019.2961937
|
[5] |
J. H. Zhao, Q. P. Li, Y. Gong, et al., “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol.68, no.8, pp.7944–7956, 2019. doi: 10.1109/TVT.2019.2917890
|
[6] |
J. Y. Feng, Z. Liu, C. Wu, et al., “Mobile edge computing for the internet of vehicles: offloading framework and job scheduling,” IEEE Vehicular Technology Magazine, vol.14, no.1, pp.28–36, 2019. doi: 10.1109/MVT.2018.2879647
|
[7] |
S. Z. Chen, Q. Li, Y. Wang, et al., “C-V2X equipment identification management and authentication mechanism,” China Communications, vol.18, no.8, pp.297–306, 2021. doi: 10.23919/JCC.2021.08.021
|
[8] |
S. Z. Chen, J. J. Hu, Y. Shi, et al., “A vision of C-V2X: technologies, field testing, and challenges with Chinese development,” IEEE Internet of Things Journal, vol.7, no.5, pp.3872–3881, 2020. doi: 10.1109/JIOT.2020.2974823
|
[9] |
S. Gyawali, S. J. Xu, Y. Qian, et al., “Challenges and solutions for cellular based V2X communications,” IEEE Communications Surveys & Tutorials, vol.23, no.1, pp.222–255, 2021. doi: 10.1109/COMST.2020.3029723
|
[10] |
J. H. Zhao, S. J. Ni, L. H. Yang, et al., “Multiband cooperation for 5G HetNets: A promising network paradigm,” IEEE Vehicular Technology Magazine, vol.14, no.4, pp.85–93, 2019. doi: 10.1109/MVT.2019.2935793
|
[11] |
S. Z. Chen, S. H. Sun, and S. L. Kang, “System integration of terrestrial mobile communication and satellite communication—the trends, challenges and key technologies in B5G and 6G,” China Communications, vol.17, no.12, pp.156–171, 2020. doi: 10.23919/JCC.2020.12.011
|
[12] |
Y. Shi, S. Z. Chen, and X. Xu, “MAGA: A mobility-aware computation offloading decision for distributed mobile cloud computing,” IEEE Internet of Things Journal, vol.5, no.1, pp.164–174, 2018. doi: 10.1109/JIOT.2017.2776252
|
[13] |
P. C. Zhu, J. Xu, J. M. Li, et al., “Learning-empowered privacy preservation in beyond 5G edge intelligence networks,” IEEE Wireless Communications, vol.28, no.2, pp.12–18, 2021. doi: 10.1109/MWC.001.2000331
|
[14] |
H. Feng, S. T. Guo, L. Yang, et al., “Collaborative data caching and computation offloading for multi-service mobile edge computing,” IEEE Transactions on Vehicular Technology, vol.70, no.9, pp.9408–9422, 2021. doi: 10.1109/TVT.2021.3099303
|
[15] |
X. T. Ma, J. H. Zhao, and Y. Gong, “Joint scheduling and resource allocation for efficiency-oriented distributed learning over vehicle platooning networks,” IEEE Transactions on Vehicular Technology, vol.70, no.10, pp.10894–10908, 2021. doi: 10.1109/TVT.2021.3107465
|
[16] |
J. H. Zhao, X. K. Sun, Q. P. Li, et al., “Edge caching and computation management for real-time internet of vehicles: An online and distributed approach,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.4, pp.2183–2197, 2021. doi: 10.1109/TITS.2020.3012966
|
[17] |
W. Gao, C. Wu, L. Zhong, et al., “Communication resources management based on spectrum sensing for vehicle platooning,” IEEE Transactions on Intelligent Transportation Systems, vol.24, no.2, pp.2251–2264, 2023. doi: 10.1109/TITS.2022.3148230
|
[18] |
Y. J. Liu, S. G. Wang, Q. L. Zhao, et al., “Dependency-aware task scheduling in vehicular edge computing,” IEEE Internet of Things Journal, vol.7, no.6, pp.4961–4971, 2020. doi: 10.1109/JIOT.2020.2972041
|
[19] |
R. A. Dziyauddin, D. Niyato, N. C. Luong, et al., “Computation offloading and content caching and delivery in vehicular edge network: A survey,” Computer Networks, vol.197, article no.108228, 2021. doi: 10.1016/j.comnet.2021.108228
|
[20] |
F. Khandaker, S. Oteafy, H. S. Hassanein, et al., “A functional taxonomy of caching schemes: towards guided designs in information-centric networks,” Computer Networks, vol.165, article no.106937, 2019. doi: 10.1016/j.comnet.2019.106937
|
[21] |
Z. J. Nan, Y. J. Jia, Z. Ren, et al., “Delay-aware content delivery with deep reinforcement learning in internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol.23, no.7, pp.8918–8929, 2022. doi: 10.1109/TITS.2021.3087833
|
[22] |
X. J. Xia, P. C. Zhu, J. M. Li, et al., “Joint user selection and transceiver design for cell-free with network-assisted full duplexing,” IEEE Transactions on Wireless Communications, vol.20, no.12, pp.7856–7870, 2021. doi: 10.1109/TWC.2021.3088485
|
[23] |
J. M. Li, M. M. Liu, P. C. Zhu, et al., “Impacts of asynchronous reception on cell-free distributed massive MIMO systems,” IEEE Transactions on Vehicular Technology, vol.70, no.10, pp.11106–11110, 2021. doi: 10.1109/TVT.2021.3110962
|
[24] |
C. W. Wang, D. H. Deng, W. D. Wang, et al., “UAV assisted communication and resource scheduling in cell-free massive MIMO based on deep reinforcement learning approach,” Journal of Electronics & Information Technology, vol.44, no.3, pp.835–843, 2022. (in Chinese) doi: 10.11999/JEIT211241
|
[25] |
F. Ye, J. M. Li, P. C. Zhu, et al., “Fingerprint-based covariance matrix estimation for cell-free distributed massive MIMO systems,” IEEE Wireless Communications Letters, vol.11, no.2, pp.416–420, 2022. doi: 10.1109/LWC.2021.3130942
|
[26] |
Z. Zhang, C. H. Lung, M. St-Hilaire, et al., “Smart proactive caching: empower the video delivery for autonomous vehicles in ICN-based networks,” IEEE Transactions on Vehicular Technology, vol.69, no.7, pp.7955–7965, 2020. doi: 10.1109/TVT.2020.2994181
|
[27] |
Z. Su, Y. L. Hui, Q. C. Xu, et al., “An edge caching scheme to distribute content in vehicular networks,” IEEE Transactions on Vehicular Technology, vol.67, no.6, pp.5346–5356, 2018. doi: 10.1109/TVT.2018.2824345
|
[28] |
Y. L. Hui, Z. Su, T. H. Luan, et al., “Content in motion: An edge computing based relay scheme for content dissemination in urban vehicular networks,” IEEE Transactions on Intelligent Transportation Systems, vol.20, no.8, pp.3115–3128, 2019. doi: 10.1109/TITS.2018.2873096
|
[29] |
S. Akhavan Bitaghsir and A. Khonsari, “Cooperative caching for content dissemination in vehicular networks,” International Journal of Communication Systems, vol.31, no.8, article no.e3534, 2018. doi: 10.1002/dac.3534
|
[30] |
J. Z. Zhou, X. Zhang, and W. B. Wang, “Social-aware proactive content caching and sharing in multi-access edge networks,” IEEE Transactions on Cognitive Communications and Networking, vol.6, no.4, pp.1308–1319, 2020. doi: 10.1109/TCCN.2020.3020887
|
[31] |
S. S. Musa, M. Zennaro, M. Libsie, et al., “Mobility-aware proactive edge caching optimization scheme in information-centric IoV networks,” Sensors, vol.22, no.4, article no.1387, 2022. doi: 10.3390/s22041387
|
[32] |
Y. AlNagar, R. H. Gohary, S. Hosny, et al., “Mobility-aware edge caching for minimizing latency in vehicular networks,” IEEE Open Journal of Vehicular Technology, vol.3, pp.68–84, 2022. doi: 10.1109/OJVT.2022.3150241
|
[33] |
L. Yao, Y. Q. Wang, X. Wang, et al., “Cooperative caching in vehicular content centric network based on social attributes and mobility,” IEEE Transactions on Mobile Computing, vol.20, no.2, pp.391–402, 2021. doi: 10.1109/TMC.2019.2944829
|
[34] |
Z. X. Yu, J. Hu, G. Y. Min, et al., “Mobility-aware proactive edge caching for connected vehicles using federated learning,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.8, pp.5341–5351, 2021. doi: 10.1109/TITS.2020.3017474
|
[35] |
G. H. Qiao, S. P. Leng, S. Maharjan, et al., “Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks,” IEEE Internet of Things Journal, vol.7, no.1, pp.247–257, 2020. doi: 10.1109/JIOT.2019.2945640
|
[36] |
L. Hou, L. Lei, K. Zheng, et al., “A Q-learning-based proactive caching strategy for non-safety related services in vehicular networks,” IEEE Internet of Things Journal, vol.6, no.3, pp.4512–4520, 2019. doi: 10.1109/JIOT.2018.2883762
|
[37] |
Z. L. Ning, K. Y. Zhang, X. J. Wang, et al., “Joint computing and caching in 5G-envisioned internet of vehicles: A deep reinforcement learning-based traffic control system,” IEEE Transactions on Intelligent Transportation Systems, vol.22, no.8, pp.5201–5212, 2021. doi: 10.1109/TITS.2020.2970276
|
[38] |
M. Zhang, S. Wang, and Q. Gao, “A joint optimization scheme of content caching and resource allocation for internet of vehicles in mobile edge computing,” Journal of Cloud Computing, vol.9, no.1, article no.33, 2020. doi: 10.1186/s13677-020-00182-x
|
[39] |
L. Breslau, P. Cao, L. Fan, et al., “Web caching and Zipf-like distributions: evidence and implications,” in Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No. 99CH36320), New York, NY, USA, pp.126–134, 1999.
|
[40] |
X. W. Wu, X. H. Li, J. Li, et al., “Caching transient content for IoT sensing: multi-agent soft actor-critic,” IEEE Transactions on Communications, vol.69, no.9, pp.5886–5901, 2021. doi: 10.1109/TCOMM.2021.3086535
|
[41] |
Q. Y. Chen, W. Z. Zhao, L. Li, et al., “ES-DQN: A learning method for vehicle intelligent speed control strategy under uncertain cut-in scenario,” IEEE Transactions on Vehicular Technology, vol.71, no.3, pp.2472–2484, 2022. doi: 10.1109/TVT.2022.3143840
|
[42] |
H. Zhou, T. Wu, H. J. Zhang, et al., “Incentive-driven deep reinforcement learning for content caching and D2D offloading,” IEEE Journal on Selected Areas in Communications, vol.39, no.8, pp.2445–2460, 2021. doi: 10.1109/JSAC.2021.3087232
|
[43] |
P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic simulation using SUMO,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, pp.2575–2582, 2018.
|
[44] |
L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks based on multi-agent reinforcement learning,” IEEE Journal on Selected Areas in Communications, vol.37, no.10, pp.2282–2292, 2019. doi: 10.1109/JSAC.2019.2933962
|
[45] |
S. Hassan, I. U. Din, A. Habbal, et al., “A popularity based caching strategy for the future Internet,” in 2016 ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT), Bangkok, Thailand, pp.1–8, 2016.
|