Citation: | JIA Min, WU Jian, ZHANG Liang, et al., “Joint Optimization Communication and Computing Resource for LEO Satellites with Edge Computing,” Chinese Journal of Electronics, vol. 32, no. 5, pp. 1011-1021, 2023, doi: 10.23919/cje.2022.00.314 |
[1] |
Y. W. Liu, J. X. Liu, A. Argyriou, et al., “Rendering-aware VR video caching over multi-cell MEC networks,” IEEE Transactions on Vehicular Technology, vol.70, no.3, pp.2728–2742, 2021. doi: 10.1109/TVT.2021.3057684
|
[2] |
S. K. Ram, S. R. Sahoo, B. B. Das, et al., “Eternal-thing: A secure aging-aware solar-energy harvester thing for sustainable IoT,” IEEE Transactions on Sustainable Computing, vol.6, no.2, pp.320–333, 2021. doi: 10.1109/TSUSC.2020.2987616
|
[3] |
W. S. Shi, J. Cao, Q. Zhang, et al., “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol.3, no.5, pp.637–646, 2016. doi: 10.1109/JIOT.2016.2579198
|
[4] |
A. R. Du, Y. C. Shen, Q. Z. Zhang, et al., “CRACAU: Byzantine machine learning meets industrial edge computing in industry 5.0,” IEEE Transactions on Industrial Informatics, vol.18, no.8, pp.5435–5445, 2022. doi: 10.1109/TII.2021.3097072
|
[5] |
X. Ma and C. L. Wen, “An Asynchronous Quasi-Cloud/ Edge /Client Collaborative Federated Learning Mechanism for Fault Diagnosis,” Chinese Journal of Electronics, vol.30, no.5, pp.969–977, 2021. doi: 10.1049/cje.2021.07.008
|
[6] |
D. Mishra, A. M. Vegni, V. Loscri, et al., “Drone networking in the 6G Era: A technology overview,” IEEE Communications Standards Magazine, vol.5, no.4, pp.88–95, 2021. doi: 10.1109/MCOMSTD.0001.2100016
|
[7] |
Y. Huang, G. Liu, Y. N. Yang, et al., “A Novel Serially Concatenated GMSK System for Satellite Communications,” Chinese Journal of Electronics, vol.30, no.2, pp.390–396, 2021. doi: 10.1049/cje.2021.02.007
|
[8] |
Z. J. Zhang, W. Y. Zhang, and F. H. Tseng, “Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques,” IEEE Network, vol.33, no.1, pp.70–76, 2019. doi: 10.1109/MNET.2018.1800172
|
[9] |
C. F. Ding, J. B. Wang, H. Zhang, et al., “Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing,” IEEE Transactions on Wireless Communications, vol.21, no.2, pp.1362–1377, 2022. doi: 10.1109/TWC.2021.3103764
|
[10] |
C. C. Li, Y. S. Zhang, X. K. Hao, et al., “Jointly optimized request dispatching and service placement for MEC in LEO network,” China Communications, vol.17, no.8, pp.199–208, 2020. doi: 10.23919/JCC.2020.08.016
|
[11] |
Q. Q. Tang, Z. S. Fei, B. Li, et al., “Computation offloading in LEO satellite networks with hybrid cloud and edge computing,” IEEE Internet of Things Journal, vol.8, no.11, pp.9164–9176, 2021. doi: 10.1109/JIOT.2021.3056569
|
[12] |
X. Q. Gao, R. K. Liu, and A. Kaushik, “Virtual network function placement in satellite edge computing with a potential game approach,” IEEE Transactions on Network and Service Management, vol.19, no.2, pp.1243–1259, 2022. doi: 10.1109/TNSM.2022.3141165
|
[13] |
S. H. Zhang, G. F. Cui, Y. T. Long, et al., “Joint computing and communication resource allocation for satellite communication networks with edge computing,” China Communications, vol.18, no.7, pp.236–252, 2021. doi: 10.23919/JCC.2021.07.019
|
[14] |
B. M. Mao, F. X. Tang, Y. Kawamoto, et al., “Optimizing computation offloading in satellite-UAV-served 6G IoT: A deep learning approach,” IEEE Network, vol.35, no.4, pp.102–108, 2021. doi: 10.1109/MNET.011.2100097
|
[15] |
S. Yu, X. W. Gong, Q. Shi, et al., “EC-SAGINs: Edge-computing-enhanced space-air-ground-integrated networks for internet of vehicles,” IEEE Internet of Things Journal, vol.9, no.8, pp.5742–5754, 2022. doi: 10.1109/JIOT.2021.3052542
|
[16] |
J. X. Zhang, X. Zhang, P. Wang, et al., “Double-edge intelligent integrated satellite terrestrial networks,” China Communications, vol.17, no.9, pp.128–146, 2020. doi: 10.23919/JCC.2020.09.011
|
[17] |
F. H. Song, H. L. Xing, S. X. Luo, et al., “A Multiobjective computation offloading algorithm for mobile-edge computing,” IEEE Internet of Things Journal, vol.7, no.9, pp.8780–8799, 2020. doi: 10.1109/JIOT.2020.2996762
|
[18] |
T. D. Burd and R. W. Brodersen, “Processor design for portable systems,” Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, vol.13, no.2, pp.203–221, 1996. doi: 10.1007/BF01130406
|
[19] |
J. Wu, M. Jia, L. Zhang, et al., “DNNs Based Computation Offloading for LEO Satellite Edge Computing,” Electronics, vol.11, no.24, pp.4108–4108, 2022. doi: 10.3390/electronics11244108
|
[20] |
X. M. Zhu and C. X. Jiang, “Delay optimization for cooperative multi-tier computing in integrated satellite-terrestrial networks,” IEEE Journal on Selected Areas in Communications, vol.41, no.2, pp.366–380, 2023. doi: 10.1109/JSAC.2022.3227083
|
[21] |
Z. Y. Song, Y. Y. Hao, Y. W. Liu, et al., “Energy-efficient multiaccess edge computing for terrestrial-satellite internet of things,” IEEE Internet of Things Journal, vol.8, no.18, pp.14202–14218, 2021. doi: 10.1109/JIOT.2021.3068141
|
[22] |
S. Sthapit, S. Lakshminarayana, L. G. He, et al., “Reinforcement learning for security-aware computation offloading in satellite networks,” IEEE Internet of Things Journal, vol.9, no.14, pp.12351–12363, 2022. doi: 10.1109/JIOT.2021.3135632
|
[23] |
J. Y. Liu, X. W. Zhao, P. Qin, et al., “Joint dynamic task offloading and resource scheduling for WPT enabled space-air-ground power internet of things,” IEEE Transactions on Network Science and Engineering, vol.9, no.2, pp.660–677, 2022. doi: 10.1109/TNSE.2021.3130251
|
[24] |
Y. Liu, L. Jiang, Q. Qi, et al., “Energy-efficient space-air-ground integrated edge computing for internet of remote things: A federated DRL approach,” IEEE Internet of Things Journal, vol.10, no.6, pp.4845–4856, 2023. doi: 10.1109/JIOT.2022.3220677
|
[25] |
L. Huang, X. Feng, A. Q. Feng, et al., “Distributed deep learning-based offloading for mobile edge computing networks,” Mobile Networks and Applications, vol.27, no.3, pp.1123–1130, 2022. doi: 10.1007/s11036-018-1177-x
|