Citation: | Nan HE, Lei WANG, and Yi TONG, “Investigating the Effects of V2C MXene on Improving the Switching Stability and Reducing the Operation Voltages of TiO2-Based Memristors,” Chinese Journal of Electronics, vol. 33, no. 5, pp. 1181–1187, 2024 doi: 10.23919/cje.2022.00.327 |
[1] |
K. M. Leng, X. Y. Yu, Z. Y. Ma, et al., “Artificial synapse arrays based on SiOx/TiOx memristive crossbar with high uniformity for neuromorphic computing,” Applied Physics Letters, vol. 120, no. 4, article no. 043101, 2022. doi: 10.1063/5.0078332
|
[2] |
J. Bera, A. Betal, A. Sharma, et al., “CdSe quantum dot-based nanocomposites for ultralow-power memristors,” ACS Applied Nano Materials, vol. 5, no. 6, pp. 8502–8510, 2022. doi: 10.1021/acsanm.2c01894
|
[3] |
N. He, L. Y. Tao, Q. Q. Zhang, et al., “Reversible transition of volatile and nonvolatile switching in Ag−In−Zn−S quantum dot-based memristors with low power consumption for synaptic applications,” ACS Applied Nano Materials, vol. 4, no. 3, pp. 2365–2374, 2021. doi: 10.1021/acsanm.0c03180
|
[4] |
Y. R. Niu, K. Jiang, X. Y. Dong, et al., “High performance and low power consumption resistive random access memory with Ag/Fe2O3/Pt structure,” Nanotechnology, vol. 32, no. 50, article no. 505715, 2021. doi: 10.1088/1361-6528/ac26fd
|
[5] |
W. C. Jhang and C. C. Hsu, “Coexistence of nonvolatile WORM, bipolar, unipolar, and volatile resistive switching characteristics in a dry oxide layer with Ag conductive bridges,” IEEE Transactions on Electron Devices, vol. 69, no. 9, pp. 4914–4919, 2022. doi: 10.1109/TED.2022.3192797
|
[6] |
D. Acharyya, A. Hazra, and P. Bhattacharyya, “A journey towards reliability improvement of TiO2 based resistive random access memory: A review,” Microelectronics Reliability, vol. 54, no. 3, pp. 541–560, 2014. doi: 10.1016/j.microrel.2013.11.013
|
[7] |
J. M. Won, M. S. Kim, and S. C. Hong, “The cause of deactivation of VOx/TiO2 catalyst by thermal effect and the role of tungsten addition,” Chemical Engineering Science, vol. 229, article no. 116068, 2021. doi: 10.1016/j.ces.2020.116068
|
[8] |
D. H. Kwon, K. M. Kim, J. H. Jang, et al., “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotechnology, vol. 5, no. 2, pp. 148–153, 2010. doi: 10.1038/nnano.2009.456
|
[9] |
D. P. Sahu and S. N. Jammalamadaka, “Remote control of resistive switching in TiO2 based resistive random access memory device,” Scientific Reports, vol. 7, article no. 17224, 2017. doi: 10.1038/s41598-017-17607-4
|
[10] |
X. J. Lian, X. Y. Shen, M. C. Zhang, et al., “Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor,” Applied Physics Letters, vol. 115, no. 6, article no. 063501, 2019. doi: 10.1063/1.5087423
|
[11] |
X. J. Lian, J. K. Fu, Z. X. Gao, et al., “High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors,” Chinese Physics B, vol. 32, no. 1, article no. 017304, 2023. doi: 10.1088/1674-1056/ac673f
|
[12] |
N. He, Q. Q. Zhang, L. Y. Tao, et al., “V2C-based memristor for applications of low power electronic synapse,” IEEE Electron Device Letters, vol. 42, no. 3, pp. 319–322, 2021. doi: 10.1109/LED.2021.3049676
|
[13] |
X. T. Chen, Y. Wang, D. Q. Shen, et al., “First-principles calculation and experimental investigation of a three-atoms-type MXene V2C and its effects on memristive devices,” IEEE Transactions on Nanotechnology, vol. 20, pp. 512–516, 2021. doi: 10.1109/TNANO.2021.3089211
|
[14] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996. doi: 10.1103/PhysRevB.54.11169
|
[15] |
J. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. doi: 10.1103/PhysRevLett.77.3865
|
[16] |
P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, vol. 50, no. 24, pp. 17953–17979, 1994. doi: 10.1103/PhysRevB.50.17953
|
[17] |
X. B. Yan, Q. L. Zhao, A. P. Chen, et al., “Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing,” Small, vol. 15, no. 24, article no. 1901423, 2019. doi: 10.1002/smll.201901423
|
[18] |
Q. Xue, Y. Peng, L. Cao, et al., “Ultralow set voltage and enhanced switching reliability for resistive random-access memory enabled by an electrodeposited nanocone array,” ACS Applied Materials & Interfaces, vol. 14, no. 22, pp. 25710–25721, 2022. doi: 10.1021/acsami.2c03978
|
[19] |
X. B. Yan, Y. F. Pei, H. W. Chen, et al., “Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors,” Advanced Materials, vol. 31, no. 7, article no. 1805284, 2019. doi: 10.1002/adma.201805284
|
[20] |
Y. Q. Wang, W. X. Wang, C. W. Zhang, et al., “A digital−analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing,” ACS Applied Electronic Materials, vol. 4, no. 7, pp. 3525–3534, 2022. doi: 10.1021/acsaelm.2c00495
|
[21] |
R. R. Pradhan, J. Bera, A. Betal, et al., “Hot injection-based synthesized colloidal CdSe quantum dots embedded in poly(4-vinylpyridine) (PVP) matrix form a nanoscale heterostructure for a high on−off ratio memory-switching device,” ACS Applied Materials & Interfaces, vol. 13, no. 21, pp. 25064–25071, 2021. doi: 10.1021/acsami.1c02702
|
[22] |
C. X. Wang, G. Q. Mao, M. H. Huang, et al., “HfOx/AlOy superlattice-like memristive synapse,” Advanced Science, vol. 9, no. 21, article no. 2201446, 2022. doi: 10.1002/advs.202201446
|
[23] |
O. Kapur, D. K. Guo, J. Reynolds, et al., “Back-end-of-line SiC-based memristor for resistive memory and artificial synapse,” Advanced Electronic Materials, vol. 8, no. 9, article no. 2200312, 2022. doi: 10.1002/aelm.202200312
|
[24] |
X. M. Liu, S. X. Ren, Z. H. Li, et al., “Flexible transparent high-efficiency photoelectric perovskite resistive switching memory,” Advanced Functional Materials, vol. 32, no. 38, article no. 2202951, 2022. doi: 10.1002/adfm.202202951
|
[25] |
M. Park, J. Park, and S. Kim, “Compatible resistive switching mechanisms in Ni/SiOx/ITO and application to neuromorphic systems,” Journal of Alloys and Compounds, vol. 903, article no. 163870, 2022. doi: 10.1016/j.jallcom.2022.163870
|
[26] |
H. S. Choi, J. Lee, B. Kim, et al., “Highly-packed self-assembled graphene oxide film-integrated resistive random-access memory on a silicon substrate for neuromorphic application,” Nanotechnology, vol. 33, no. 43, article no. 435201, 2022. doi: 10.1088/1361-6528/ac805d
|
[27] |
W. Zhang, J. Z. Lei, Y. X. Dai, et al., “Switching-behavior improvement in HfO2/ZnO bilayer memory devices by tailoring of interfacial and microstructural characteristics,” Nanotechnology, vol. 33, no. 25, article no. 255703, 2022. doi: 10.1088/1361-6528/ac5e70
|
[28] |
J. Yun and D. Kim, “Unraveling the role of polydopamines in resistive switching in Al/Polydopamine/Al structure for organic resistive random-access memory,” Polymers, vol. 14, no. 15, article no. 2995, 2022. doi: 10.3390/polym14152995
|
[29] |
Y. Xia, J. Wang, R. Chen, et al., “2D heterostructure of Bi2O2Se/Bi2SeOx nanosheet for resistive random access memory,” Advanced Electronic Materials, vol. 8, no. 9, article no. 2200126, 2022. doi: 10.1002/AELM.202200126
|
[30] |
K. Kumari, S. Kar, A. D. Thakur, et al., “Role of an oxide interface in a resistive switch,” Current Applied Physics, vol. 35, pp. 16–23, 2022. doi: 10.1016/j.cap.2021.10.006
|
[31] |
Q. Xue, T. Hang, J. H. Liang, et al., “Nonvolatile resistive memory and synaptic learning using hybrid flexible memristor based on combustion synthesized Mn-ZnO,” Journal of Materials Science and Technology, vol. 119, no. 24, pp. 123–130, 2022. doi: 10.1016/j.jmst.2021.09.007
|
[32] |
X. Y. Wang, N. Ali, G. Bi, et al., “Investigation of resistive switching in lead-free bismuth–silver halide double perovskite,” Semiconductor Science and Technology, vol. 37, no. 6, article no. 065011, 2022. doi: 10.1088/1361-6641/ac668b
|
[33] |
G. Abbas, M. Hassan, Q. Khan, et al., “A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films,” Advanced Electronic Materials, vol. 8, no. 9, article no. 2101412, 2022. doi: 10.1002/aelm.202101412
|
[34] |
X. Y. Zhao, K. L. Zhang, K. Hu, et al., “Self-rectifying Al2O3/TaOx memristor with gradual operation at low current by interfacial layer,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6100–6105, 2021. doi: 10.1109/TED.2021.3120701
|
[35] |
V. I. Ivashchenko, P. E. A. Turchi, V. I. Shevchenko, et al., “Stability and mechanical properties of molybdenum carbides and the Ti–Mo–C solid solutions: A first-principles study,” Materials Chemistry and Physics, vol. 275, article no. 125178, 2022. doi: 10.1016/j.matchemphys.2021.125178
|
[36] |
X. M. He, J. C. Hu, and X. Tian, “Electronic characteristics of PbS quantum dots passivated by halides on different surfaces,” Applied Surface Science, vol. 568, article no. 150736, 2021. doi: 10.1016/j.apsusc.2021.150736
|