Citation: | CHEN Zhixiong, ZHANG Zhikun, CAO Tianshu, et al., “PLC for In-Vehicle Network: A DRL-Based Algorithm of Diversity Combination of OFDM Subcarriers,” Chinese Journal of Electronics, vol. 32, no. 6, pp. 1245-1257, 2023, doi: 10.23919/cje.2022.00.331 |
[1] |
X. Cheng, H. T. Zhang, Z. H. Yang, et al., “Integrated sensing and communications for Internet of vehicles: Current status and development trend,” Journal on Communications, vol.43, no.8, pp.188–202, 2022. (in Chinese) doi: 10.11959/j.issn.1000-436x.2022137
|
[2] |
X. C. Xu, K. Liu, C. H. Liu, et al., “Potential game based channel allocation for vehicular edge computing,” Acta Electronica Sinica, vol.49, no.5, pp.851–860, 2021. (in Chinese) doi: 10.12263/DZXB.20200994
|
[3] |
G. Thandavarayan, M. Sepulcre, and J. Gozalvez, “Generation of cooperative perception messages for connected and automated vehicles,” IEEE Transactions on Vehicular Technology, vol.69, no.12, pp.16336–16341, 2020. doi: 10.1109/TVT.2020.3036165
|
[4] |
Y. Liao, X. Y. Tian, Z. R. Cai, et al., “Intelligent channel estimation based on edge computing for C-V2 I,” Acta Electronica Sinica, vol.49, no.5, pp.833–842, 2021. (in Chinese) doi: 10.12263/DZXB.20200953
|
[5] |
H. H. Yang, J. C. Shang, J. J. Li, et al., “Multi-traffic targets tracking based on an improved structural sparse representation with spatial-temporal constraint,” Chinese Journal of Electronics, vol.31, no.2, pp.266–276, 2022. doi: 10.1049/cje.2020.00.007
|
[6] |
H. Z. Du, Q. Y. Wen, S. S. Zhang, et al., “A pairing-free certificateless signcryption scheme for vehicular Ad hoc networks,” Chinese Journal of Electronics, vol.30, no.5, pp.947–955, 2021. doi: 10.1049/cje.2021.07.006
|
[7] |
D. B. Rawat, R. Doku, A. Adebayo, et al., “Blockchain enabled named data networking for secure vehicle-to-everything communications,” IEEE Network, vol.34, no.5, pp.185–189, 2020. doi: 10.1109/MNET.001.1900593
|
[8] |
S. C. Liu, L. Xiao, L. F. Huang, et al., “Impulsive noise recovery and elimination: A sparse machine learning based approach,” IEEE Transactions on Vehicular Technology, vol.68, no.3, pp.2306–2315, 2019. doi: 10.1109/TVT.2019.2891617
|
[9] |
A. Pittolo, M. De Piante, F. Versolatto, et al., “In-vehicle power line communication: Differences and similarities among the in-car and the in-ship scenarios,” IEEE Vehicular Technology Magazine, vol.11, no.2, pp.43–51, 2016. doi: 10.1109/MVT.2015.2480098
|
[10] |
H. C. Yang and M. S. Alouini, “Data-oriented transmission in future wireless systems: Toward trustworthy support of advanced internet of things,” IEEE Vehicular Technology Magazine, vol.14, no.3, pp.78–83, 2019. doi: 10.1109/MVT.2019.2921587
|
[11] |
H. C. Yang, S. Choi, and M. S. Alouini, “Ultra-reliable low-latency transmission of small data over fading channels: A data-oriented analysis,” IEEE Communications Letters, vol.24, no.3, pp.515–519, 2020. doi: 10.1109/LCOMM.2019.2959530
|
[12] |
N. Shlezinger, R. Shaked, and R. Dabora, “On the capacity of MIMO broadband power line communications channels,” IEEE Transactions on Communications, vol.66, no.10, pp.4795–4810, 2018. doi: 10.1109/TCOMM.2018.2835472
|
[13] |
S. C. Liu, F. Yang, and J. Song, “An optimal interleaving scheme with maximum time-frequency diversity for PLC systems,” IEEE Transactions on Power Delivery, vol.31, no.3, pp.1007–1014, 2016. doi: 10.1109/TPWRD.2014.2365579
|
[14] |
Y. Iraqi and A. Al-Dweik, “Efficient information transmission using smart OFDM for IoT applications,” IEEE Internet of Things Journal, vol.7, no.9, pp.8397–8409, 2020. doi: 10.1109/JIOT.2020.2990538
|
[15] |
X. L. Xu, Z. J. Fang, L. Y. Qi, et al., “A deep reinforcement learning-based distributed service offloading method for edge computing empowered internet of vehicles,” Chinese Journal of Computers, vol.44, no.12, pp.2382–2405, 2021. (in Chinese) doi: 10.11897/SP.J.1016.2021.02382
|
[16] |
X. C. Wang, F. Wu, Y. Z. Sun, et al., “Internet of vehicles resource management based on federal deep reinforcement learning,” Electronic Measurement Technology, vol.44, no.10, pp.114–120, 2021. (in Chinese) doi: 10.19651/j.cnki.emt.2106047
|
[17] |
J. H. Liu, J. H. Zhao, and X. K. Sun, “Deep reinforcement learning based wireless resource allocation for V2X communications,” in Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Beijing, China, pp.1–5, 2021.
|
[18] |
J. H. Zhao, J. Liu, Y. W. Nie, et al., “Location-assisted beam alignment for train-to-train communication in urban rail transit system,” IEEE Access, vol.7, pp.80133–80145, 2019. doi: 10.1109/ACCESS.2019.2923019
|
[19] |
F. Huang, G. X. Li, H. C. Wang, et al., “Navigation for UAV pair-supported relaying in unknown IoT systems with deep reinforcement learning,” Chinese Journal of Electronics, vol.31, no.3, pp.416–429, 2022. doi: 10.1049/cje.2021.00.305
|
[20] |
H. H. Pu, X. S. Liu, and D. G. Xu, “Deep reinforcement learning based robust secure transmission for cooperative non-orthogonal multiple access networks,” Proceedings of the CSEE, vol.42, no.13, pp.4760–4774, 2022. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.210364
|
[21] |
J. Anatory, N. Theethayi, and R. Thottappillil, “Power-line communication channel model for interconnected networks—part I: Two-conductor system,” IEEE Transactions on Power Delivery, vol.24, no.1, pp.118–123, 2009. doi: 10.1109/TPWRD.2008.2005679
|
[22] |
M. Tlich, A. Zeddam, F. Moulin, et al., “Indoor power-line communications channel characterization up to 100 MHz—part I: One-parameter deterministic model,” IEEE Transactions on Power Delivery, vol.23, no.3, pp.1392–1401, 2008. doi: 10.1109/TPWRD.2008.919397
|
[23] |
A. Dubey and R. K. Mallik, “PLC system performance with AF relaying,” IEEE Transactions on Communications, vol.63, no.6, pp.2337–2345, 2015. doi: 10.1109/TCOMM.2015.2427171
|
[24] |
Z. X. Chen, L. J. Wang, D. S. Han, et al., “A unified performance analysis of relaying communication system for IoT application with hybrid fading,” IEEE Internet of Things Journal, vol.7, no.1, pp.570–583, 2020. doi: 10.1109/JIOT.2019.2951179
|
[25] |
K. M. Rabie, B. Adebisi, A. M. Tonello, et al., “Two-stage non-orthogonal multiple access over power line communication channels,” IEEE Access, vol.6, pp.17368–17376, 2018. doi: 10.1109/ACCESS.2018.2820175
|
[26] |
S. P. Herath, N. H. Tran, and T. Le-Ngoc, “Optimal signaling scheme and capacity limit of PLC under Bernoulli-Gaussian impulsive noise,” IEEE Transactions on Power Delivery, vol.30, no.1, pp.97–105, 2015. doi: 10.1109/TPWRD.2014.2330197
|
[27] |
L. H. Xi, Y. Wang, Y. Wang, et al., “Deep reinforcement learning-based service-oriented resource allocation in smart grids,” IEEE Access, vol.9, pp.77637–77648, 2021. doi: 10.1109/ACCESS.2021.3082259
|
[28] |
H. van Hasselt, A. Guez, and R. D. Silver, “Deep reinforcement learning with double Q-learning, ” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, pp.2094–2100, 2015.
|
[29] |
Z. J. Zhang, “Improved Adam optimizer for deep neural networks,” in Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, pp.1–2, 2018.
|
[30] |
S. V. Zhidkov, “Analysis and comparison of several simple impulsive noise mitigation schemes for OFDM receivers,” IEEE Transactions on Communications, vol.56, no.1, pp.5–9, 2008. doi: 10.1109/TCOMM.2008.050391
|