Citation: | Minte SONG, Nan LIU, Shuaiyang ZHOU, et al., “A Design of 2-Stage Voltage Ramp-Up SRAM Physical Unclonable Function,” Chinese Journal of Electronics, vol. 33, no. 2, pp. 371–379, 2024 doi: 10.23919/cje.2022.00.406 |
[1] |
S. Satpathy, S. Mathew, J. T. Li, et al., “13 fj/bit probing-resilient 250 k PUF array with soft darkbit masking for 1.94% bit-error in 22 nm tri-gate CMOS,” in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, pp.239–242, 2014.
|
[2] |
J. L. Zhang, C. Q. Shen, H. H. Su, et al., “Voltage over-scaling-based lightweight authentication for IoT security,” IEEE Transactions on Computers, vol. 71, no. 2, pp. 323–336, 2022. doi: 10.1109/TC.2021.3049543
|
[3] |
M. H. Mahalat, S. Mandal, A. Mondal, et al., “Implementation, characterization and application of path changing switch based arbiter PUF on FPGA as a lightweight security primitive for IoT,” ACM Transactions on Design Automation of Electronic Systems, vol. 27, no. 3, article no. 26, 2021. doi: 10.1145/3491212
|
[4] |
Z. Q. He, W. B. Chen, L. C. Zhang, et al., “A highly reliable arbiter PUF with improved uniqueness in FPGA implementation using Bit-Self-Test,” IEEE Access, vol. 8, pp. 181751–181762, 2020. doi: 10.1109/ACCESS.2020.3028514
|
[5] |
R. D. Sala, D. Bellizia, and G. Scotti, “A novel ultra-compact FPGA-compatible TRNG architecture exploiting latched ring oscillators,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 69, no. 3, pp. 1672–1676, 2022. doi: 10.1109/TCSII.2021.3121537
|
[6] |
A. K. Aasha, L. E. Hsu, A. Patyal, et al., “Improving the quality of FPGA RO-PUF by principal component analysis (PCA),” ACM Journal on Emerging Technologies in Computing Systems, vol. 17, no. 3, pp. 1–25, 2021. doi: 10.1145/3442444
|
[7] |
V. K. Rai, S. Tripathy, and J. Mathew, “2SPUF: Machine learning attack resistant SRAM PUF,” in 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Guwahati, India, pp.149–154, 20204.
|
[8] |
S. Baek, G. H. Yu, J. Kim, et al., “A reconfigurable SRAM based CMOS PUF with challenge to response Pairs,” IEEE Access, vol. 9, pp. 79947–79960, 2021. doi: 10.1109/ACCESS.2021.3084621
|
[9] |
S. Rosenblatt, D. Fainstein, A. Cestero, et al., “Field tolerant dynamic intrinsic chip ID using 32 nm High-K/metal gate SOI embedded DRAM,” IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 940–947, 2013. doi: 10.1109/JSSC.2013.2239134
|
[10] |
R. Ali, D. M. Zhang, H. Cai, et al., “A machine learning attack-resilient strong PUF Leveraging the process variation of MRAM,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 69, no. 6, pp. 2712–2716, 2022. doi: 10.1109/TCSII.2022.3144497
|
[11] |
X. J. Zhao, Q. Zhao, Y. P. Liu, et al., “An ultracompact switching-voltage-based fully reconfigurable RRAM PUF with low native instability,” IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 3010–3013, 2020. doi: 10.1109/TED.2020.2996181
|
[12] |
J. Li, Y. J. Cui, C. Y. Gu, et al., “Dynamically configurable physical unclonable function based on RRAM crossbar,” in 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Alberta, AB, Canada, pp.1–6, 2021.
|
[13] |
S. S. Kumar, J. Guajardo, R. Maes, et al., “Extended abstract: The butterfly PUF protecting IP on every FPGA,” in 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, CA, USA, pp.67–70, 2008.
|
[14] |
S. Hemavathy and V. S. K. Bhaaskaran, “Double edge-triggered tristate flip-flop physical unclonable function for secure IoT ecosystem,” in 2021 IEEE International Symposium on Smart Electronic Systems (iSES), Jaipur, India, pp.44–47, 2021.
|
[15] |
Y. P. Hu, L. J. Wu, Z. J. Chen, et al., “STT-MRAM-based reliable weak PUF,” IEEE Transactions on Computers, vol. 71, no. 7, pp. 1564–1574, 2022. doi: 10.1109/TC.2021.3095657
|
[16] |
B. Forlin, R. Husemann, L. Carro, et al., “G-PUF: An intrinsic PUF based on GPU error signatures,” in 2020 IEEE European Test Symposium (ETS), Tallinn, Estonia, pp. 1–2, 2020.
|
[17] |
E. Dubrova, O. Näslund, B. Degen, et al., “CRC-PUF: A machine learning attack resistant lightweight PUF construction,” in 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS & PW), Stockholm, Sweden, pp.264–271, 2019.
|
[18] |
P. Williams, H. Idriss, and M. Bayoumi, “Mc-PUF: Memory-based and machine learning resilient strong PUF for device authentication in internet of things,” in 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, pp.61–65, 2021.
|
[19] |
D. Lim, J. W. Lee, B. Gassend, et al., “Extracting secret keys from integrated circuits,” IEEE Transactions on Very Large Scale Integration, no. VLSI, pp. 1200–1205, 2005. doi: 10.1109/TVLSI.2005.859470
|
[20] |
R. Pappu, B. Recht, J. Taylor, et al., “Physical one-way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002. doi: 10.1126/science.1074376
|
[21] |
S. Mathew, S. Satpathy, V. Suresh, et al., “A 4fJ/bit delay-hardened physically unclonable function circuit with selective bit destabilization in 14nm tri-gate CMOS,” in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, pp. 1–2, 2016.
|
[22] |
R. Maes, V. Rozic, I. Verbauwhede, et al., “Experimental evaluation of physically unclonable functions in 65 nm CMOS,” in 2012 Proceedings of the ESSCIRC (ESSCIRC), Bordeaux, France, pp.486–489, 2012.
|
[23] |
J. W. Lee, D. Lim, B. Gassend, et al., “A technique to build a secret key in integrated circuits for identification and authentication applications,” in 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525), Honolulu, HI, USA, pp.176–179, 2004.
|
[24] |
A. Garg and T. T. Kim, “Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, pp.1941–1944, 2014.
|
[25] |
K. Y. Liu, H. L. Pu, and H. Shinohara, “A 0.5-V 2.07-fJ/b 497-F2 EE/CMOS hybrid SRAM physically unclonable function with < 1E-7 Bit error rate achieved through hot carrier injection burn-in,” in 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, pp.1–4, 2020.
|
[26] |
L. Lu and T. T. H. Kim, “A high reliable SRAM-Based PUF with enhanced challenge-response space,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 69, no. 2, pp. 589–593, 2022. doi: 10.1109/TCSII.2021.3099010
|
[27] |
K. Y. Liu, X. P. Chen, H. L. Pu, et al., “A 0.5-V hybrid SRAM physically unclonable function using hot carrier injection burn-in for stability reinforcement,” IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2193–2204, 2021. doi: 10.1109/JSSC.2020.3035207
|
[28] |
G. E. Suh, C. W. O’Donnell, I. Sachdev, et al., “Design and implementation of the AEGIS single-chip secure processor using physical random functions,” in 32nd International Symposium on Computer Architecture (ISCA’05), Madison, WI, USA, pp.25–36, 2005.
|
[29] |
K. Sun, Y. F. Shen, Y. J. Lao, et al., “A new error correction scheme for physical unclonable function,” in 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, pp.374–377, 2018.
|
[30] |
M. Q. Liu, C. Zhou, Q. Y. Tang, et al., “A data remanence based approach to generate 100% stable keys from an SRAM physical unclonable function,” in 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, China, pp. 1–6, 2017.
|
[31] |
A. Alheyasat, G. Torrens, S. Bota, et al., “Selection of SRAM cells to improve reliable PUF implementation using cell mismatch metric,” in 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain, pp.1–6, 2020.
|
[32] |
Y. Su, J. Holleman, and B. P. Otis, “A digital 1.6 pJ/bit chip identification circuit using process variations,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 69–77, 2008. doi: 10.1109/JSSC.2007.910961
|
[33] |
Y. Shifman, A. Miller, O. Keren, et al., “A method to improve reliability in a 65-nm SRAM PUF array,” IEEE Solid-State Circuits Letters, vol. 1, no. 6, pp. 138–141, 2018. doi: 10.1109/LSSC.2018.2879216
|
[34] |
Y. Shifman, A. Miller, Y. Weizmann, et al., “A 2 Bit/Cell tilting SRAM-based PUF with a BER of 3.1E-10 and an energy of 21 FJ/Bit in 65 nm,” IEEE Open Journal of Circuits and Systems, vol. 1, pp. 205–217, 2020. doi: 10.1109/OJCAS.2020.3034266
|
[35] |
Y. Shifman, A. Miller, O. Keren, et al., “An SRAM-based PUF with a capacitive digital preselection for a 1E-9 key error probability,” IEEE Transactions on Circuits and Systems I:Regular Papers, vol. 67, no. 12, pp. 4855–4868, 2020. doi: 10.1109/TCSI.2020.2996772
|
[36] |
K. Y. Liu, Y. Min, X. Yang, et al., “A 373-F2 0.21 %-Native-BER EE SRAM physically unclonable function with 2-D power-gated bit cells and VSS bias-based dark-bit detection,” IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1719–1732, 2020. doi: 10.1109/JSSC.2019.2963002
|