Citation: | Yuhao ZHOU, Zhenxue HE, Jianhui JIANG, et al., “An Efficient and Fast Area Optimization Approach for Mixed Polarity Reed-Muller Logic Circuits,” Chinese Journal of Electronics, vol. 33, no. 5, pp. 1165–1180, 2024 doi: 10.23919/cje.2022.00.407 |
[1] |
H. W. Chen, X. Y. Xue, C. S. Liu, et al., “Logic gates based on neuristors made from two-dimensional materials,” Nature Electronics, vol. 4, no. 6, pp. 399–404, 2021. doi: 10.1038/s41928-021-00591-z
|
[2] |
P. Yin, Z. Shu, Y. J. Xia, et al., “A low-area and low-power comma detection and word alignment circuits for JESD204B/C controller,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2925–2935, 2021. doi: 10.1109/TCSI.2021.3072772
|
[3] |
S. H. Gunther, F. Binns, D. M. Carmean, et al., “Managing the impact of increasing microprocessor power consumption,” Intel Technology Journal, vol. 5, no. 1, pp. 1–9, 2001.
|
[4] |
M. Chen, R. R. Zheng, Y. T. Fu, et al., “An analog control strategy with multiplier-less power calculation circuit for flyback microinverter,” IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 8617–8621, 2021. doi: 10.1109/TPEL.2021.3056382
|
[5] |
H. Liang, Y. S. Xia, L. B. Qian, et al., “Low power 3-input AND/XOR gate design,” Journal of Computer-Aided Design & Computer Graphics, vol. 27, no. 5, pp. 940–945, 2015. (in Chinese) doi: 10.3969/j.issn.1003-9775.2015.05.021
|
[6] |
Z. X. He, L. M. Xiao, F. Gu, et al., “An efficient and fast polarity optimization approach for mixed polarity Reed-Muller logic circuits,” Frontiers of Computer Science, vol. 11, no. 4, pp. 728–742, 2017. doi: 10.1007/s11704-016-5259-2
|
[7] |
P. J. Wang, Z. H. Wang, R. Xu, et al., “Conversion algorithm for MPRM expansion,” Journal of Semiconductors, vol. 35, no. 3, article no. 035007, 2014. doi: 10.1088/1674-4926/35/3/0350070
|
[8] |
D. L. Bu and J. H. Jiang, “An efficient optimization algorithm for multi-output MPRM circuits with very large number of input variables,” in Proceedings of the 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, pp. 228–232, 2014.
|
[9] |
A. Das and S. N. Pradhan, “Design time temperature reduction in mixed polarity dual Reed-Muller network: A NSGA-II based approach,” Advances in Electrical and Computer Engineering, vol. 20, no. 1, pp. 99–104, 2020. doi: 10.4316/AECE.2020.01013
|
[10] |
C. Carvalho and G. V. G. L. Neumann, “The next-to-minimal weights of binary projective Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 62, no. 11, pp. 6300–6303, 2016. doi: 10.1109/TIT.2016.2611527
|
[11] |
Z. X. He, Y. H. Pan, K. J. Wang, et al., “Area optimization for MPRM logic circuits based on improved multiple disturbances fireworks algorithm,” Applied Mathematics and Computation, vol. 399, article no. 126008, 2021. doi: 10.1016/j.amc.2021.126008
|
[12] |
A. Das and S. N. Pradhan, “Area-power-temperature aware AND-XOR network synthesis based on shared mixed polarity Reed-Muller expansion,” International Journal of Intelligent Systems and Applications, vol. 10, no. 12, pp. 35–46, 2018. doi: 10.5815/ijisa.2018.12.04
|
[13] |
X. Wang, R. Zhang, W. K. Wang, et al., “Polarity searching for MPRM logic circuit based on improved adaptive genetic algorithm,” in Proceedings of the 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops, Beijing, China, pp. 1354–1358, 2015.
|
[14] |
Y. H. Zhou, Z. X. He, T. Wang, et al., “Area and power optimization approach for mixed polarity Reed-Muller logic circuits based on multi-strategy bacterial foraging algorithm,” Applied Soft Computing, vol. 130, article no. 109720, 2022. doi: 10.1016/j.asoc.2022.109720
|
[15] |
Z. X. He, L. M. Xiao, Z. S. Huo, et al., “Fast minimization of fixed polarity Reed-Muller expressions,” IEEE Access, vol. 7, pp. 24843–24851, 2019. doi: 10.1109/ACCESS.2019.2899035
|
[16] |
M. H. A. Khan, “An ASIC architecture for generating optimum mixed polarity Reed-Muller expression,” Engineering Letters, vol. 13, no. 3, pp. 236–243, 2006.
|
[17] |
H. Z. Yu, P. J. Wang, D. S. Wang, et al., “Discrete ternary particle swarm optimization for area optimization of MPRM circuits,” Journal of Semiconductors, vol. 34, no. 2, article no. 025011, 2013. doi: 10.1088/1674-4926/34/2/025011
|
[18] |
A. Das, Y. C. Hareesh, and S. N. Pradhan, “NSGA-II based thermal-aware mixed polarity dual Reed-Muller network synthesis using parallel tabular technique,” Journal of Circuits, Systems and Computers, vol. 29, no. 15, article no. 020008, 2020. doi: 10.1142/S021812662020008X
|
[19] |
R. Drechsler, M. Theobald, and B. Becker, “Fast OFDD-based minimization of fixed polarity Reed-Muller expressions,” IEEE Transactions on Computers, vol. 45, no. 11, pp. 1294–1299, 1996. doi: 10.1109/12.544485
|
[20] |
R. Drechsler, B. Becker, and N. Drechsler, “Genetic algorithm for minimisation of fixed polarity Reed-Muller expressions,” IEE Proceedings-Computers and Digital Techniques, vol. 147, no. 5, pp. 349–353, 2000. doi: 10.1049/ip-cdt:20000743
|
[21] |
U. Kalay, D. V. Hall, and M. A. Perkowski, “A minimal universal test set for self-test of EXOR-sum-of-products circuits,” IEEE Transactions on Computers, vol. 49, no. 3, pp. 267–276, 2000. doi: 10.1109/12.841130
|
[22] |
B. A. Al Jassani, N. Urquhart, and A. E. A. Almaini, “Manipulation and optimisation techniques for Boolean logic,” IET Computers & Digital Techniques, vol. 4, no. 3, pp. 227–239, 2010. doi: 10.1049/iet-cdt.2009.0007
|
[23] |
E. Zaitseva, V. Levashenko, I. Lukyanchuk, et al., “Application of generalized Reed-Muller expression for development of non-binary circuits,” Electronics, vol. 9, no. 1, article no. 12, 2020. doi: 10.3390/electronics9010012
|
[24] |
Y. H. Zhou, Z. X. He, C. Chen, et al., “An efficient power optimization approach for fixed polarity Reed-Muller logic circuits based on metaheuristic optimization algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 12, pp. 5380–5393, 2022. doi: 10.1109/TCAD.2022.3149720
|
[25] |
C. F. Liu, J. F. Wang, and Y. J. Y. T. Leung, “Integrated bacteria foraging algorithm for cellular manufacturing in supply chain considering facility transfer and production planning,” Applied Soft Computing, vol. 62, pp. 602–618, 2018. doi: 10.1016/j.asoc.2017.10.034
|
[26] |
H. Y. Cai, L. Q. Ran, L. D. Zou, et al., “Heuristic hybrid bacterial foraging algorithm for the pose detection of backlight units,” Automatic Control and Computer Sciences, vol. 54, no. 3, pp. 229–237, 2020. doi: 10.3103/S0146411620030025
|
[27] |
S. Das, S. Dasgupta, A. Biswas, et al., “On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 39, no. 3, pp. 670–679, 2009. doi: 10.1109/TSMCA.2008.2011474
|
[28] |
F. L. Ye, C. Y. Lee, Z. J. Lee, et al., “Incorporating particle swarm optimization into improved bacterial foraging optimization algorithm applied to classify imbalanced data,” Symmetry, vol. 12, no. 2, article no. 229, 2020. doi: 10.3390/sym12020229
|
[29] |
C. Zhang, Y. W. Yu, Y. F. Wang, et al., “Takagi-Sugeno fuzzy neural network hysteresis modeling for magnetic shape memory alloy actuator based on modified bacteria foraging algorithm,” International Journal of Fuzzy Systems, vol. 22, no. 4, pp. 1314–1329, 2020. doi: 10.1007/s40815-020-00826-9
|
[30] |
Y. Liu, L. W. Tian, and L. N. Fan, “The hybrid bacterial foraging algorithm based on many-objective optimizer,” Saudi Journal of Biological Sciences, vol. 27, no. 12, pp. 3743–3752, 2020. doi: 10.1016/j.sjbs.2020.08.021
|
[31] |
J. J. Hu, N. F. Jin, P. Li, et al., “An improved bacterial foraging algorithm for multi-modal problems,” Journal of Physics:Conference Series, vol. 1631, article no. 012069, 2020. doi: 10.1088/1742-6596/1631/1/012069
|
[32] |
W. Shao and Y. J. Zuo, “Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm,” Computational Statistics, vol. 35, no. 1, pp. 203–226, 2020. doi: 10.1007/s00180-019-00906-x
|
[33] |
T. Wang, Y. L. Zhang, N. N. Xiong, et al., “An effective edge-intelligent service placement technology for 5G-and-beyond industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4148–4157, 2022. doi: 10.1109/TII.2021.3114300
|
[34] |
Z. Shen, Q. H. Yang, and H. Jiang, “Multichannel neighbor discovery in Bluetooth low energy networks: Modeling and performance analysis,” IEEE Transactions on Mobile Computing, vol. 22, no. 4, pp. 2262–2280, 2023. doi: 10.1109/TMC.2021.3113349
|
[35] |
F. S. Makri, Z. M. Psillakis, and A. N. Arapis, “On the concentration of runs of ones of length exceeding a threshold in a Markov chain,” Journal of Applied Statistics, vol. 46, no. 1, pp. 85–100, 2019. doi: 10.1080/02664763.2018.1455815
|
[36] |
M. Tripathi, L. K. Singh, S. Singh, et al., “A comparative study on reliability analysis methods for safety critical systems using petri-nets and dynamic flowgraph methodology: A case study of nuclear power plant,” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 564–578, 2022. doi: 10.1109/TR.2021.3109059
|
[37] |
I. A. W. Abdul Razak, I. Z. Abidin, Y. K. Siah, et al., “An hour ahead electricity price forecasting with least square support vector machine and bacterial foraging optimization algorithm,” The Indonesian Journal of Electrical Engineering and Computer Science, vol. 10, no. 2, pp. 748–755, 2018. doi: 10.11591/ijeecs.v10.i2.pp748-755
|
[38] |
M. A. Awadallah, “Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data,” Energy Conversion and Management, vol. 113, pp. 312–320, 2016. doi: 10.1016/j.enconman.2016.01.071
|
[39] |
D. M. Xiao, Y. Wang, K. F. He, et al., “A harmonic suppression method of variable frequency drive based on bacterial foraging algorithm,” International Journal of Computing Science and Mathematics, vol. 7, no. 1, pp. 76–86, 2016. doi: 10.1504/IJCSM.2016.076043
|
[40] |
B. Subudhi and R. Pradhan, “Bacterial foraging optimization approach to parameter extraction of a photovoltaic module,” IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 381–389, 2018. doi: 10.1109/TSTE.2017.2736060
|
[41] |
J. Yi, D. Huang, S. Y. Fu, et al., “Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process,” IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2488–2500, 2016. doi: 10.1109/TIE.2015.2510977
|
[42] |
M. A. Sahib, A. R. Abdulnabi, and M. A. Mohammed, “Improving bacterial foraging algorithm using non-uniform elimination-dispersal probability distribution,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 3341–3349, 2018. doi: 10.1016/j.aej.2017.12.010
|
[43] |
P. Sindhuja and P. Ramamoorthy, “An improved fuzzy enabled optimal multipath routing for wireless sensor network,” Cluster Computing, vol. 22, no. 5, pp. 11689–11697, 2019. doi: 10.1007/s10586-017-1452-9
|
[44] |
D. M. Zambrano Zambrano, D. Vélez, Y. Daza, et al., “Parametric analysis of BFOA for minimization problems using a benchmark function,” Enfoque UTE, vol. 10, no. 3, pp. 67–80, 2019. doi: 10.29019/enfoque.v10n3.490
|
[45] |
S. Yang, “Logic synthesis and optimization benchmarks user guide version 3.0: Technical report,” Microelectronics Center of North Carolina, http://www.lsi-cad.com/RM/RM2021.html, 1991.
|