Citation: | Bo ZHOU, Yifan LI, and Zuhang WANG, “A Fast Startup Crystal Oscillator with Digital SAR-AFC Based Two-Step Injection,” Chinese Journal of Electronics, vol. 33, no. 5, pp. 1147–1153, 2024 doi: 10.23919/cje.2023.00.043 |
[1] |
S. Iguchi, H. Fuketa, T. Sakurai, et al., “Variation-tolerant quick-start-up CMOS crystal oscillator with chirp injection and negative resistance booster,” IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 496–508, 2016. doi: 10.1109/JSSC.2015.2499240
|
[2] |
H. Esmaeelzadeh and S. Pamarti, “A quick startup technique for high-Q oscillators using precisely timed energy injection,” IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 692–702, 2018. doi: 10.1109/JSSC.2017.2766208
|
[3] |
K. M. Megawer, N. Pal, A. Elkholy, et al., “A fast startup CMOS crystal oscillator using two-step injection,” IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3257–3268, 2019. doi: 10.1109/JSSC.2019.2936296
|
[4] |
M. Ding, Y. H. Liu, Y. Zhang, et al., “5.3 a 95 µW 24 MHz digitally controlled crystal oscillator for IoT applications with 36nJ start-up energy and >13× start-up time reduction using a fully-autonomous dynamically-adjusted load,” in Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 90–91, 2017.
|
[5] |
A. Karimi-Bidhendi, H. R Pu, and P. Heydari, “Study and design of a fast start-up crystal oscillator using precise dithered injection and active inductance,” IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2543–2554, 2019. doi: 10.1109/JSSC.2019.2920084
|
[6] |
D. Griffith, J. Murdock, and P. T. Røine, “5.9 a 24 MHz crystal oscillator with robust fast start-up using dithered injection,” in Proceedings of 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 104–105, 2016.
|
[7] |
K. M. Lei, P. I. Mak, M. K. Law, et al., “A regulation-free sub-0.5 V 16/24 MHz crystal oscillator for energy-harvesting BLE radios with 14.2 nJ startup energy and 31.8 pW steady-state power,” in Proceedings of 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 52–54, 2018.
|
[8] |
B. Verhoef, J. Prummel, W. Kruiskamp, et al., “18.6 A 32 MHz crystal oscillator with fast start-up using synchronized signal injection,” in Proceedings of 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 304–305, 2019.
|
[9] |
H. Luo, S. Kundu, C. Lee, et al., “A 12 MHz/38.4 MHz fast start-up crystal oscillator using impedance guided chirp injection in 22 nm FinFET CMOS,” in Proceedings of 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, pp. 1–2, 2021.
|
[10] |
A. Karimi-Bidhendi and P. Heydari, “A study of multi-phase injection on accelerating crystal oscillator start-up,” IEEE Transactions on Circuits and Systems II:Express Briefs, vol. 67, no. 12, pp. 2868–2872, 2020. doi: 10.1109/TCSII.2020.2978097
|
[11] |
Y. R. Jin, B. Zhou, Y. J. Liu, et al., “A 0.8-V low-power low-cost CMOS crystal oscillator with high frequency accuracy,” in Proceedings of the 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, pp. 285–288, 2020.
|
[12] |
S. Panyai and A. Thanachayanont, “Design and realization of a process and temperature compensated CMOS ring oscillator,” in Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, pp. 1–4, 2012.
|