Turn off MathJax
Article Contents
Xiaogang XU, Guanlei XU, Xiaotong WANG, “Sharper Hardy Uncertainty Relations on Signal Concentration in terms of Linear Canonical Transform,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 1–10, 2024 doi: 10.23919/cje.2023.00.096
Citation: Xiaogang XU, Guanlei XU, Xiaotong WANG, “Sharper Hardy Uncertainty Relations on Signal Concentration in terms of Linear Canonical Transform,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 1–10, 2024 doi: 10.23919/cje.2023.00.096

Sharper Hardy Uncertainty Relations on Signal Concentration in terms of Linear Canonical Transform

doi: 10.23919/cje.2023.00.096
More Information
  • Author Bio:

    Xiaogang XU received his Ph. D. degree in Information and System Analysis in 1999 at Dalian Science and Technology University in Dalian. Now he is a professor and MS tutor of the Department of Arming System and Automation at Dalian Naval Academy. His main research interests are virtual reality and computer graphs. (Email: xgl_86@sohu.com)

    Guanlei XU received his Ph. D. degree in Information Engineering and Control in 2009 at Dalian Naval Academy. Now he is a lecturer in the Department of Military Oceanography at Dalian Naval Academy. His main research interests are signal analyzing and image processing. (Email: xgl_86@163.com)

    Xiaotong WANG received his Ph. D. degree in Information and System Analysis in 1996 from Dalian Science and Technology University in Dalian. Now he is a professor and the PhD tutor of the Department of Navigation at Dalian Naval Academy. His main research interests are signal/image processing and application in navigation. (Email: xxggll_86@163.com)

  • Corresponding author: Email: xgl_86@163.com
  • Received Date: 2023-03-28
  • Accepted Date: 2023-06-20
  • Available Online: 2023-07-21
  • Linear canonical transform is of much significance to optics and information science. Hardy uncertainty principle, like Heisenberg uncertainty principle, plays an important role in various fields. In this paper, four new sharper Hardy uncertainty relations on linear canonical transform are derived. These new derived uncertainty relations are connected with the linear canonical transform parameters and indicate new insights for signal energy concentration. Especially, for certain transform parameters, e.g. b=0, these new proposed uncertainty relations break the traditional counterparts in signal energy concentration, as will result in new physical interpretation in terms of uncertainty principle. Theoretical analysis and numerical examples are given to show the efficiency of these new relations.
  • loading
  • [1]
    K. K. Selig, “Uncertainty principles revisited, ” Available at: http://www-lit.ma.tum.de/veroeff/quel/010.47001.pdf, 2001.
    [2]
    G. B. Folland and A. Sitaram, “The uncertainty principle: A mathematical survey,” Journal of Fourier Analysis and Applications, vol. 3, no. 3, pp. 207–238, 1997. doi: 10.1007/BF02649110
    [3]
    P. J. Loughlin and L. Cohen, “The uncertainty principle: Global, local, or both?,” IEEE Transactions on Signal Processing, vol. 52, no. 5, pp. 1218–1227, 2004. doi: 10.1109/TSP.2004.826160
    [4]
    H. Maassen and J. B. M. Uffink, “Generalized entropic uncertainty relations,” Physical Review Letters, vol. 60, no. 12, pp. 1103–1106, 1988. doi: 10.1103/PhysRevLett.60.1103
    [5]
    G. L. Xu, X. G. Xu, and X. T. Wang, “Generalized uncertainty inequalities on fisher information associated with LCT,” Journal of Beijing Institute of Technology, vol. 30, no. 3, pp. 217–227, 2021. doi: 10.15918/j.jbit1004-0579.2021.025
    [6]
    J. Zhao, R. Tao, and Y. Wang, “On signal moments and uncertainty relations associated with linear canonical transform,” Signal Processing, vol. 90, no. 9, pp. 2686–2689, 2010. doi: 10.1016/j.sigpro.2010.03.017
    [7]
    G. L. Xu, X. G. Xu, and X. T. Wang, “Generalized entropic uncertainty principles on the complex signals in terms of fractional Hilbert transform,” Optik, vol. 216, article no. 164966, 2020. doi: 10.1016/j.ijleo.2020.164966
    [8]
    G. L. Xu, X. G. Xu, X. T. Wang, et al., “Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT,” Signal, Image and Video Processing, vol. 14, no. 3, pp. 499–507, 2020. doi: 10.1007/s11760-019-01571-9
    [9]
    G. H. Hardy, “A theorem concerning Fourier transforms,” Journal of the London Mathematical Society, vol. s1-8, no. 3, pp. 227–231, 1933. doi: 10.1112/jlms/s1-8.3.227
    [10]
    E. M. Stein and R. Shakarchi, Princeton Lecture in Analysis II. Complex Analysis. Princeton University Press, Princeton, NJ, USA, 2003.
    [11]
    M. Cowling, L. Escauriaza, C. E. Kenig, et al., “The Hardy uncertainty principle revisited,” Indiana University Mathematics Journal, vol. 59, no. 6, pp. 2007–2026, 2010. doi: 10.1512/iumj.2010.59.4395
    [12]
    L. Escauriaza, C. E. Kenig, G. Ponce, et al., “The sharp Hardy uncertainty principle for Schrödinger evolutions,” Duke Mathematical Journal, vol. 155, no. 1, pp. 163–187, 2010. doi: 10.1215/00127094-2010-053
    [13]
    L. Escauriaza, C. E. Kenig, G. Ponce, et al., “Hardy’s uncertainty principle, convexity and Schrödinger evolutions,” Journal of the European Mathematical Society, vol. 10, no. 4, pp. 883–907, 2008. doi: 10.4171/JEMS/134
    [14]
    M. G. Cowling and J. F. Price, “Bandwidth versus time concentration: The Heisenberg–Pauli–Weyl inequality,” SIAM Journal on Mathematical Analysis, vol. 15, no. 1, pp. 151–165, 1984. doi: 10.1137/0515012
    [15]
    P. Jaming and A. M. Powell, “Uncertainty principles for orthonormal sequences,” Journal of Functional Analysis, vol. 243, no. 2, pp. 611–630, 2007. doi: 10.1016/j.jfa.2006.09.001
    [16]
    L. Hörmander, Linear Partial Differential Operators. Springer, Berlin Heidelberg, Germany, 1969.
    [17]
    D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,” SIAM Journal on Applied Mathematics, vol. 49, no. 3, pp. 906–931, 1989. doi: 10.1137/0149053
    [18]
    A. Karoui, “Unidimensional and bidimensional prolate spheroidal wave functions and applications,” Journal of the Franklin Institute, vol. 348, no. 7, pp. 1668–1694, 2011. doi: 10.1016/j.jfranklin.2010.09.001
    [19]
    H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty — II,” Bell System Technical Journal, vol. 40, no. 1, pp. 65–84, 1961. doi: 10.1002/j.1538-7305.1961.tb03977.x
    [20]
    R. Somaraju and L. W. Hanlen, “Uncertainty principles for signal concentrations,” in 2006 Australian Communications Theory Workshop, Perth, WA, Australia, pp.38–42, 2006.
    [21]
    W. Beckner, “Pitt’s Inequality and the Uncertainty Principle,” Proceedings of the American Mathematical Society, vol. 123, no. 6, pp. 1897–1905, 1995.
    [22]
    S. Q. Xu, L. Feng, Y. Chai, et al., “Uncertainty relations for signal concentrations associated with the linear canonical transform,” Digital Signal Processing, vol. 81, pp. 100–105, 2018. doi: 10.1016/j.dsp.2018.06.008
    [23]
    T. Z. Xu and B. Z. Li, The Linear Canonical Transform and Applications. Science Press, Beijing, China, 2013. (in Chinese)
    [24]
    R. Tao, L. Qi, Y. Wang, Theory and Application of the Fractional Fourier Transform. Tsinghua University Press, Beijing, China, 2004.
    [25]
    A. Stern, “Sampling of compact signals in offset linear canonical transform domains,” Signal, Image and video Processing, vol. 1, no. 4, pp. 359–367, 2007. doi: 10.1007/s11760-007-0029-0
    [26]
    K. K. Sharma and S. Sharma, “Signal reconstruction using undersampled signals taken in multiple linear canonical transform domains,” Journal of Optics, vol. 14, no. 5, article no. 055702, 2012. doi: 10.1088/2040-8978/14/5/055702
    [27]
    J. Healy, J. T. Sheridan, and J. P. Ryle, “Linear canonical transform sampling: Analysis,” in Proceedings of SPIE 7427, Optical Modeling and Performance Predictions IV, San Diego, CA, USA, article no.742703, 2009.
    [28]
    O. Aytür and H. M. Ozaktas, “Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms,” Optics Communications, vol. 120, no. 3-4, pp. 166–170, 1995. doi: 10.1016/0030-4018(95)00452-E
    [29]
    W. Zhang, R. Tao, and Y. Wang, “Linear canonical S transform,” Chinese Journal of Electronics, vol. 20, no. 1, pp. 63–66, 2011.
    [30]
    A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform,” Optics Letters, vol. 21, no. 4, pp. 281–283, 1996. doi: 10.1364/OL.21.000281
    [31]
    R. Tao, X. M. Li, and Y. Wang, “Generalization of the fractional Hilbert transform,” IEEE Signal Processing Letters, vol. 15, pp. 365–368, 2008. doi: 10.1109/LSP.2008.919814
    [32]
    S. C. Pei and M. H. Yeh, “Discrete fractional Hilbert transform,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 11, pp. 1307–1311, 2000. doi: 10.1109/82.885138
    [33]
    B. Z. Li, R. Tao, and Y. Wang, “Hilbert transform associated with the linear canonical transform,” Acta Armamentarii, vol. 27, no. 5, pp. 827–830, 2006.
    [34]
    X. D. Zhang, Modern Signal Processing. Tsinghua University Press, Beijing, China, 1995. (in Chinese)
    [35]
    A. I. Zayed, “Hilbert transform associated with the fractional Fourier transform,” IEEE Signal Processing Letters, vol. 5, no. 8, pp. 206–208, 1998. doi: 10.1109/97.704973
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (149) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return