Citation:  Xiaogang XU, Guanlei XU, Xiaotong WANG, “Sharper Hardy Uncertainty Relations on Signal Concentration in terms of Linear Canonical Transform,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 1–10, 2024 doi: 10.23919/cje.2023.00.096 
[1] 
K. K. Selig, “Uncertainty principles revisited, ” Available at: http://wwwlit.ma.tum.de/veroeff/quel/010.47001.pdf, 2001.

[2] 
G. B. Folland and A. Sitaram, “The uncertainty principle: A mathematical survey,” Journal of Fourier Analysis and Applications, vol. 3, no. 3, pp. 207–238, 1997. doi: 10.1007/BF02649110

[3] 
P. J. Loughlin and L. Cohen, “The uncertainty principle: Global, local, or both?,” IEEE Transactions on Signal Processing, vol. 52, no. 5, pp. 1218–1227, 2004. doi: 10.1109/TSP.2004.826160

[4] 
H. Maassen and J. B. M. Uffink, “Generalized entropic uncertainty relations,” Physical Review Letters, vol. 60, no. 12, pp. 1103–1106, 1988. doi: 10.1103/PhysRevLett.60.1103

[5] 
G. L. Xu, X. G. Xu, and X. T. Wang, “Generalized uncertainty inequalities on fisher information associated with LCT,” Journal of Beijing Institute of Technology, vol. 30, no. 3, pp. 217–227, 2021. doi: 10.15918/j.jbit10040579.2021.025

[6] 
J. Zhao, R. Tao, and Y. Wang, “On signal moments and uncertainty relations associated with linear canonical transform,” Signal Processing, vol. 90, no. 9, pp. 2686–2689, 2010. doi: 10.1016/j.sigpro.2010.03.017

[7] 
G. L. Xu, X. G. Xu, and X. T. Wang, “Generalized entropic uncertainty principles on the complex signals in terms of fractional Hilbert transform,” Optik, vol. 216, article no. 164966, 2020. doi: 10.1016/j.ijleo.2020.164966

[8] 
G. L. Xu, X. G. Xu, X. T. Wang, et al., “Generalized Cramér–Rao inequality and uncertainty relation for fisher information on FrFT,” Signal, Image and Video Processing, vol. 14, no. 3, pp. 499–507, 2020. doi: 10.1007/s11760019015719

[9] 
G. H. Hardy, “A theorem concerning Fourier transforms,” Journal of the London Mathematical Society, vol. s18, no. 3, pp. 227–231, 1933. doi: 10.1112/jlms/s18.3.227

[10] 
E. M. Stein and R. Shakarchi, Princeton Lecture in Analysis II. Complex Analysis. Princeton University Press, Princeton, NJ, USA, 2003.

[11] 
M. Cowling, L. Escauriaza, C. E. Kenig, et al., “The Hardy uncertainty principle revisited,” Indiana University Mathematics Journal, vol. 59, no. 6, pp. 2007–2026, 2010. doi: 10.1512/iumj.2010.59.4395

[12] 
L. Escauriaza, C. E. Kenig, G. Ponce, et al., “The sharp Hardy uncertainty principle for Schrödinger evolutions,” Duke Mathematical Journal, vol. 155, no. 1, pp. 163–187, 2010. doi: 10.1215/001270942010053

[13] 
L. Escauriaza, C. E. Kenig, G. Ponce, et al., “Hardy’s uncertainty principle, convexity and Schrödinger evolutions,” Journal of the European Mathematical Society, vol. 10, no. 4, pp. 883–907, 2008. doi: 10.4171/JEMS/134

[14] 
M. G. Cowling and J. F. Price, “Bandwidth versus time concentration: The Heisenberg–Pauli–Weyl inequality,” SIAM Journal on Mathematical Analysis, vol. 15, no. 1, pp. 151–165, 1984. doi: 10.1137/0515012

[15] 
P. Jaming and A. M. Powell, “Uncertainty principles for orthonormal sequences,” Journal of Functional Analysis, vol. 243, no. 2, pp. 611–630, 2007. doi: 10.1016/j.jfa.2006.09.001

[16] 
L. Hörmander, Linear Partial Differential Operators. Springer, Berlin Heidelberg, Germany, 1969.

[17] 
D. L. Donoho and P. B. Stark, “Uncertainty principles and signal recovery,” SIAM Journal on Applied Mathematics, vol. 49, no. 3, pp. 906–931, 1989. doi: 10.1137/0149053

[18] 
A. Karoui, “Unidimensional and bidimensional prolate spheroidal wave functions and applications,” Journal of the Franklin Institute, vol. 348, no. 7, pp. 1668–1694, 2011. doi: 10.1016/j.jfranklin.2010.09.001

[19] 
H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty — II,” Bell System Technical Journal, vol. 40, no. 1, pp. 65–84, 1961. doi: 10.1002/j.15387305.1961.tb03977.x

[20] 
R. Somaraju and L. W. Hanlen, “Uncertainty principles for signal concentrations,” in 2006 Australian Communications Theory Workshop, Perth, WA, Australia, pp.38–42, 2006.

[21] 
W. Beckner, “Pitt’s Inequality and the Uncertainty Principle,” Proceedings of the American Mathematical Society, vol. 123, no. 6, pp. 1897–1905, 1995.

[22] 
S. Q. Xu, L. Feng, Y. Chai, et al., “Uncertainty relations for signal concentrations associated with the linear canonical transform,” Digital Signal Processing, vol. 81, pp. 100–105, 2018. doi: 10.1016/j.dsp.2018.06.008

[23] 
T. Z. Xu and B. Z. Li, The Linear Canonical Transform and Applications. Science Press, Beijing, China, 2013. (in Chinese)

[24] 
R. Tao, L. Qi, Y. Wang, Theory and Application of the Fractional Fourier Transform. Tsinghua University Press, Beijing, China, 2004.

[25] 
A. Stern, “Sampling of compact signals in offset linear canonical transform domains,” Signal, Image and video Processing, vol. 1, no. 4, pp. 359–367, 2007. doi: 10.1007/s1176000700290

[26] 
K. K. Sharma and S. Sharma, “Signal reconstruction using undersampled signals taken in multiple linear canonical transform domains,” Journal of Optics, vol. 14, no. 5, article no. 055702, 2012. doi: 10.1088/20408978/14/5/055702

[27] 
J. Healy, J. T. Sheridan, and J. P. Ryle, “Linear canonical transform sampling: Analysis,” in Proceedings of SPIE 7427, Optical Modeling and Performance Predictions IV, San Diego, CA, USA, article no.742703, 2009.

[28] 
O. Aytür and H. M. Ozaktas, “Nonorthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms,” Optics Communications, vol. 120, no. 34, pp. 166–170, 1995. doi: 10.1016/00304018(95)00452E

[29] 
W. Zhang, R. Tao, and Y. Wang, “Linear canonical S transform,” Chinese Journal of Electronics, vol. 20, no. 1, pp. 63–66, 2011.

[30] 
A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional Hilbert transform,” Optics Letters, vol. 21, no. 4, pp. 281–283, 1996. doi: 10.1364/OL.21.000281

[31] 
R. Tao, X. M. Li, and Y. Wang, “Generalization of the fractional Hilbert transform,” IEEE Signal Processing Letters, vol. 15, pp. 365–368, 2008. doi: 10.1109/LSP.2008.919814

[32] 
S. C. Pei and M. H. Yeh, “Discrete fractional Hilbert transform,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 11, pp. 1307–1311, 2000. doi: 10.1109/82.885138

[33] 
B. Z. Li, R. Tao, and Y. Wang, “Hilbert transform associated with the linear canonical transform,” Acta Armamentarii, vol. 27, no. 5, pp. 827–830, 2006.

[34] 
X. D. Zhang, Modern Signal Processing. Tsinghua University Press, Beijing, China, 1995. (in Chinese)

[35] 
A. I. Zayed, “Hilbert transform associated with the fractional Fourier transform,” IEEE Signal Processing Letters, vol. 5, no. 8, pp. 206–208, 1998. doi: 10.1109/97.704973
