Citation: | Liang YAO, Xiaolong XU, Wanchun DOU, et al., “An Intelligent Privacy Protection Scheme for Efficient Edge Computation Offloading in IoV,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 910–919, 2024 doi: 10.23919/cje.2023.00.111 |
[1] |
N. Zhang, T. Han, M. Dianati, et al., “Guest editorial special issue on space-air-ground integrated networks for intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2701–2704, 2022. doi: 10.1109/TITS.2022.3153079
|
[2] |
J. W. Huang, J. Y. Wan, B. F. Lv, et al., “Joint computation offloading and resource allocation for edge-cloud collaboration in internet of vehicles via deep reinforcement learning,” IEEE Systems Journal, vol. 17, no. 2, pp. 2500–2511, 2023. doi: 10.1109/JSYST.2023.3249217
|
[3] |
C. F. Wang, Y. K. Lin, and J. C. Chen, “A cooperative image object recognition framework and task offloading optimization in edge computing,” Journal of Network and Computer Applications, vol. 204, article no. 103404, 2022. doi: 10.1016/j.jnca.2022.103404
|
[4] |
Y. Chen, J. Zhao, Y. Wu, et al., “QoE-Aware decentralized task offloading and resource allocation for end-edge-cloud systems: A game-theoretical approach,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 769–784, 2024. doi: 10.1109/TMC.2022.3223119
|
[5] |
H. T. Cao, S. Garg, G. Kaddoum, et al., “Intelligent virtual resource allocation of QoS-Guaranteed slices in B5G-enabled VANETs for intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19704–19713, 2022. doi: 10.1109/TITS.2022.3178267
|
[6] |
Y. Chen, J. T. Hu, J. Zhao, et al., “QoS-Aware computation offloading in LEO satellite edge computing for IoT: A game-theoretical approach,” Chinese Journal of Electronics, in press, doi: 10.23919/cje.2022.00.412.
|
[7] |
G. Li, L. Liu, Z. P. Liang, et al., “Memetic algorithm based on community detection for energy-efficient service migration optimization in 5G mobile edge computing,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, pp. 1–7, 2021.
|
[8] |
C. Hou and Q. C. Zhao, “Optimal task-offloading control for edge computing system with tasks offloaded and computed in sequence,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 2, pp. 1378–1392, 2023. doi: 10.1109/TASE.2022.3176745
|
[9] |
J. W. Huang, H. Gao, S. H. Wan, et al., “AoI-aware energy control and computation offloading for industrial IoT,” Future Generation Computer Systems, vol. 139, pp. 29–37, 2023.
|
[10] |
K. Y. Zhang, X. L. Gui, D. W. Ren, et al., “Energy–latency tradeoff for computation offloading in UAV-assisted multiaccess edge computing system,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6709–6719, 2021. doi: 10.1109/JIOT.2020.2999063
|
[11] |
W. Z. Wang, Q. Chen, Z. M. Yin, et al., “Blockchain and PUF-based lightweight authentication protocol for wireless medical sensor networks,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8883–8891, 2022. doi: 10.1109/JIOT.2021.3117762
|
[12] |
Y. Ding, K. L. Li, C. B. Liu, et al., “Budget-constrained service allocation optimization for mobile edge computing,” IEEE Transactions on Services Computing, vol. 16, no. 1, pp. 147–161, 2023. doi: 10.1109/TSC.2021.3133547
|
[13] |
Y. Chen, J. Zhao, J. T. Hu, et al., “Distributed task offloading and resource purchasing in NOMA-enabled mobile edge computing: Hierarchical game theoretical approaches,” ACM Transactions on Embedded Computing Systems, vol. 23, no. 1, article no. 2, 2024. doi: 10.1145/3597023
|
[14] |
Z. H. Tian, X. S. Gao, S. Su, et al., “Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory,” IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 5971–5980, 2019. doi: 10.1109/TVT.2019.2910217
|
[15] |
Z. Y. Wang, T. Schaul, M. Hessel, et al., “Dueling network architectures for deep reinforcement learning,” in Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, pp. 1995–2003, 2016.
|
[16] |
X. F. He, T. H. Li, R. C. Jin, et al., “Delay-optimal coded offloading for distributed edge computing in fading environments,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 10796–10808, 2022. doi: 10.1109/TWC.2022.3187427
|
[17] |
C. Y. Yi, J. Cai, and Z. Su, “A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications,” IEEE Transactions on Mobile Computing, vol. 19, no. 1, pp. 29–43, 2020. doi: 10.1109/TMC.2019.2891736
|
[18] |
H. Z. Guo and J. J. Liu, “Collaborative computation offloading for multiaccess edge computing over fiber-wireless networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526, 2018. doi: 10.1109/TVT.2018.2790421
|
[19] |
S. T. Guo, J. D. Liu, Y. Y. Yang, et al., “Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 319–333, 2019. doi: 10.1109/TMC.2018.2831230
|
[20] |
J. H. Zhao, Q. P. Li, Y. Gong, et al., “Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019. doi: 10.1109/TVT.2019.2917890
|
[21] |
X. Y. Qiu, W. K. Zhang, W. H. Chen, et al., “Distributed and collective deep reinforcement learning for computation offloading: A practical perspective,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1085–1101, 2021. doi: 10.1109/TPDS.2020.3042599
|
[22] |
A. M. Seid, G. O. Boateng, B. Mareri, et al., “Multi-agent DRL for task offloading and resource allocation in multi-UAV enabled IoT edge network,” IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp. 4531–4547, 2021. doi: 10.1109/TNSM.2021.3096673
|
[23] |
I. A. Elgendy, A. Muthanna, M. Hammoudeh, et al., “Advanced deep learning for resource allocation and security aware data offloading in industrial mobile edge computing,” Big Data, vol. 9, no. 4, pp. 265–278, 2021. doi: 10.1089/big.2020.0284
|
[24] |
W. Z. Zhang, I. A. Elgendy, M. Hammad, et al., “Secure and optimized load balancing for multitier IoT and edge-cloud computing systems,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8119–8132, 2021. doi: 10.1109/JIOT.2020.3042433
|
[25] |
I. A. Elgendy, W. Z. Zhang, Y. M. Zeng, et al., “Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks,” IEEE Transactions on Network and Service Management, vol. 17, no. 4, pp. 2410–2422, 2020. doi: 10.1109/TNSM.2020.3020249
|
[26] |
I. A. Elgendy, W. Z. Zhang, Y. C. Tian, et al., “Resource allocation and computation offloading with data security for mobile edge computing,” Future Generation Computer Systems, vol. 100, pp. 531–541, 2019.
|
[27] |
M. Khan and N. Munir, “A novel image encryption technique based on generalized advanced encryption standard based on field of any characteristic,” Wireless Personal Communications, vol. 109, no. 2, pp. 849–867, 2019. doi: 10.1007/s11277-019-06594-6
|
[28] |
V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing Atari with deep reinforcement learning,” arXiv preprint, arXiv: 1312.5602, 2013.
|
[29] |
H. J. Wu, J. Zhang, Z. P. Cai, et al., “Toward energy-aware caching for intelligent connected vehicles,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8157–8166, 2020. doi: 10.1109/JIOT.2020.2980954
|