Citation: | Yuxin SHI, Xinjin LU, Yifu SUN, et al., “Cooperative Self-Learning: A Framework for Few-Shot Jamming Identification,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 1–8, 2024 doi: 10.23919/cje.2023.00.229 |
[1] |
H. Pirayesh and H. C. Zeng, “Jamming attacks and anti-jamming strategies in wireless networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 767–809, 2022. doi: 10.1109/COMST.2022.3159185
|
[2] |
E. Geraniotis and M. Pursley, “Error probabilities for slow-frequency-hopped spread-spectrum multiple-access communications over fading channels,” IEEE Transactions on Communications, vol. 30, no. 5, pp. 996–1009, 1982. doi: 10.1109/TCOM.1982.1095551
|
[3] |
Z. Lin, H. H. Niu, K. An, et al., “Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 4, pp. 3717–3724, 2022. doi: 10.1109/TAES.2022.3155711
|
[4] |
Z. Lin, K. An, H. H. Niu, et al., “SLNR-based secure energy efficient beamforming in multibeam satellite systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 2, pp. 2085–2088, 2023. doi: 10.1109/TAES.2022.3190238
|
[5] |
K. An, M. Lin, J. Ouyang, et al., “Secure transmission in cognitive satellite terrestrial networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 11, pp. 3025–3037, 2016. doi: 10.1109/JSAC.2016.2615261
|
[6] |
T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–179, 2018. doi: 10.1109/JSTSP.2018.2797022
|
[7] |
M. Lichtman, J. D. Poston, S. Amuru, et al., “A communications jamming taxonomy,” IEEE Security & Privacy, vol. 14, no. 1, pp. 47–54, 2016. doi: 10.1109/MSP.2016.13
|
[8] |
F. Fang, Y. G. Li, Y. T. Niu, et al., “Jamming signal recognition based on decision tree algorithm,” Communications Technology, vol. 52, no. 11, pp. 2617–2623, 2019. doi: 10.3969/j.issn.1002-0802.2019.11.007
|
[9] |
Y. X. Shi, X. J. Lu, Y. T. Niu, et al., “Efficient jamming identification in wireless communication: Using small sample data driven naive bayes classifier,” IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1375–1379, 2021. doi: 10.1109/LWC.2021.3064843
|
[10] |
M. O. Mughal and S. Kim, “Signal classification and jamming detection in wide-band radios using Naïve bayes classifier,” IEEE Communications Letters, vol. 22, no. 7, pp. 1398–1401, 2018. doi: 10.1109/LCOMM.2018.2830769
|
[11] |
M. Q. Liu, Z. L. Liu, W. D. Lu, et al., “Distributed few-shot learning for intelligent recognition of communication jamming,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 3, pp. 395–405, 2022. doi: 10.1109/JSTSP.2021.3137028
|
[12] |
J. R. Shen, Y. S. Li, Y. X. Shi, et al., “Multi-node cooperative jamming recognition method based on deep convolutional neural network,” Radio Communications Technology, vol. 48, no. 4, pp. 711–717, 2022. doi: 10.3969/j.issn.1003-3114.2022.04.018
|
[13] |
N. S. Zhang, J. R. Shen, Y. X. Shi, et al., “CNN-zero: A zero-shot learning framework for jamming identification, ” in Proceedings of the 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, pp. 1126–1131, 2022.
|
[14] |
J. R. Shen, Y. S. Li, Y. G. Zhu, et al., “Cooperative multi-node jamming recognition method based on deep residual network,” Electronics, vol. 11, no. 20, article no. 3280, 2022. doi: 10.3390/electronics11203280
|
[15] |
D. A. Guimarães, “Pietra-Ricci index detector for centralized data fusion cooperative spectrum sensing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 12354–12358, 2020. doi: 10.1109/TVT.2020.3009440
|
[16] |
M. Obeed, H. Dahrouj, A. M. Salhab, et al., “Power allocation and link selection for multicell cooperative NOMA hybrid VLC/RF systems,” IEEE Communications Letters, vol. 25, no. 2, pp. 560–564, 2021. doi: 10.1109/LCOMM.2020.3029178
|
[17] |
J. Wu, P. Li, Y. Chen, et al., “Analysis of byzantine attack strategy for cooperative spectrum sensing,” IEEE Communications Letters, vol. 24, no. 8, pp. 1631–1635, 2020. doi: 10.1109/LCOMM.2020.2990869
|
[18] |
I. Triguero, S. García, and F. Herrera, “Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study,” Knowledge and Information Systems, vol. 42, no. 2, pp. 245–284, 2015. doi: 10.1007/s10115-013-0706-y
|
[19] |
F. Musumeci, L. Magni, O. Ayoub, et al., “Supervised and semi-supervised learning for failure identification in microwave networks,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 1934–1945, 2021. doi: 10.1109/TNSM.2020.3039938
|
[20] |
H. B. Fan, Z. J. Yang, and Z. G. Cao, “Automatic recognition for common used modulations in satellite communication,” Journal of China Institute of Communications, vol. 25, no. 1, pp. 140–149, 2004. doi: 10.3321/j.issn:1000-436X.2004.01.018
|
[21] |
Y. T. Chan and L. G. Gadbois, “Identification of the modulation type of a signal,” Signal Processing, vol. 16, no. 2, pp. 149–154, 1989. doi: 10.1016/0165-1684(89)90093-5
|
[22] |
X. M. Yang and R. Tao, “Automatic identification of interferences in direct sequence spread spectrum communication system,” Acta Armamentarii, vol. 29, no. 9, pp. 1078–1082, 2008. doi: 10.3321/j.issn:1000-1093.2008.09.012
|
[23] |
L. Lu, J. Yang, H. Wang, et al., “The analysis and feature extraction of nonstationary random characteristics of radar jammer signal,” in Proceedings of the 2002 3rd International Symposium on Electromagnetic Compatibility, Beijing, China, pp. 660–663, 2002.
|