Citation: | Qingsheng FENG, Shuai XIAO, Wangyang LIU, et al., “Research on Object Detection and Combination Clustering for Railway Switch Machine Gap Detection,” Chinese Journal of Electronics, vol. 34, no. 1, pp. 1–18, 2025 doi: 10.23919/cje.2023.00.268 |
[1] |
X. X. Hu, Y. Cao, T. Tang, et al., “Data-driven technology of fault diagnosis in railway point machines: Review and challenges,” Transportation Safety and Environment, vol. 4, no. 4, article no. tdac036, 2022. doi: 10.1093/tse/tdac036
|
[2] |
X. Liu, A. Lovett, T. Dick, et al., “Optimization of ultrasonic rail-defect inspection for improving railway transportation safety and efficiency,” Journal of Transportation Engineering, vol. 140, no. 10, article no. 04014048, 2014. doi: 10.1061/(ASCE)TE.1943-5436.0000697
|
[3] |
Y. Cao, Y. K. Sun, G. Xie, et al., “A sound-based fault diagnosis method for railway point machines based on two-stage feature selection strategy and ensemble classifier,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12074–12083, 2022. doi: 10.1109/TITS.2021.3109632
|
[4] |
Y. K. Sun, Y. Cao, P. Li, et al., “Vibration-based fault diagnosis for railway point machines using VMD and multiscale fluctuation-based dispersion entropy,” Chinese Journal of Electronics, vol. 33, no. 3, pp. 803–813, 2024. doi: 10.23919/cje.2022.00.075
|
[5] |
M. Hamadache, S. Dutta, O. Olaby, et al., “On the fault detection and diagnosis of railway switch and crossing systems: An overview,” Applied Sciences, vol. vo.9, no. 23, article no. 5129, 2019. doi: 10.3390/app9235129
|
[6] |
S. Z. Huang, F. Zhang, R. J. Yu, et al., “Turnout fault diagnosis through dynamic time warping and signal normalization,” Journal of Advanced Transportation, vol. 2017 article no. 3192967, 2017. doi: 10.1155/2017/3192967
|
[7] |
Z. Shi, Z. C. Liu, and J. Lee, “An auto-associative residual based approach for railway point system fault detection and diagnosis,” Measurement, vol. 119 pp. 246–258, 2018. doi: 10.1016/j.measurement.2018.01.062
|
[8] |
S. Z. Huang, X. L. Yang, L. Wang, et al., “Two-stage turnout fault diagnosis based on similarity function and fuzzy c-means,” Advances in Mechanical Engineering, vol. 10, no. 12, pp. 1–12, 2018. doi: 10.1177/1687814018811402
|
[9] |
Y. K. Sun, Y. Cao, G. Xie, et al., “Condition monitoring for railway point machines based on sound analysis and support vector machine,” Chinese Journal of Electronics, vol. 29, no. 4, pp. 786–792, 2020. doi: 10.1049/cje.2020.06.007
|
[10] |
Y. K. Sun, Y. Cao, G. Xie, et al., “Sound based fault diagnosis for RPMs based on multi-scale fractional permutation entropy and two-scale algorithm,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11184–11192, 2021. doi: 10.1109/TVT.2021.3090419
|
[11] |
X. Lu, “Design and implementation of turnout safety detection system based on machine vision, ” Master Thesis, Beijing Jiaotong University, Beijing, China, 2007. (in Chinese).
|
[12] |
S. C. Lou, “Study on switch machines gap detection system based on video image recognition technology, ” Master Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2013. (in Chinese).
|
[13] |
H. B. Zhou, Y. G. Zhang, L. N. Wang, et al., “Research of switch gap detection method based on machine vision,” Automation & Instrumentation, no. 6, pp. 26–29, 2014. doi: 10.3969/j.issn.1001-9227.2014.06.0026
|
[14] |
T. H. Xu, G. Wang, H. F. Wang, et al., “Gap measurement of point machine using adaptive wavelet threshold and mathematical morphology,” Sensors, vol. 16, no. 12, article no. 2006, 2016. doi: 10.3390/s16122006
|
[15] |
Z. W. Zhong and J. Y. Chen, “CMOS plane based location and detection of switch gaps,” Journal of the China Railway Society, vol. 38, no. 12, pp. 70–75, 2016. doi: 10.3969/j.issn.1001-8360.2016.12.011
|
[16] |
Z. F. Li, D. Y. Lin, X. F. Peng, et al., “Detection algorithm of switch machine gap based on template matching,” Journal of the China Railway Society, vol. 43, no. 8, pp. 88–96, 2021. doi: 10.3969/j.issn.1001-8360.2021.08.011
|
[17] |
C. Li, L. H. Zhao, and W. N. Liu, “Automatic detection algorithm of switch machine gap based on canny operator,” Journal of the China Railway Society, vol. 40, no. 10, pp. 81–87, 2018. doi: 10.3969/j.issn.1001-8360.2018.10.012
|
[18] |
Y. T. Liu and G. W. Chen, “Automatic detection of switch machine gap based on SFFCM image segmentation,” Journal of Beijing Jiaotong University, vol. 46, no. 2, pp. 29–36, 2022. doi: 10.11860/j.issn.1673-0291.20210137
|
[19] |
T. Tao, D. C. Dong, S. Z. Huang, et al., “Gap detection of switch machines in complex environment based on object detection and image processing,” Journal of Transportation Engineering, Part A: Systems, vol. 146, no. 8, article no. 04020083, 2020. doi: 10.1061/JTEPBS.0000406
|
[20] |
H. G. Pan, Y. H. Shi, X. Y. Lei, et al., “Fast identification model for coal and gangue based on the improved tiny YOLO v3,” Journal of Real-Time Image Processing, vol. 19, no. 3, pp. 687–701, 2022. doi: 10.1007/s11554-022-01215-1
|
[21] |
P. C. Yan, Q. S. Sun, N. N. Yin, et al., “Detection of coal and gangue based on improved YOLOv5.1 which embedded scSE module,” Measurement, vol. 188, article no. 110530, 2022. doi: 10.1016/j.measurement.2021.110530
|
[22] |
F. J. Gui, S. Yu, H. L. Zhang, et al., “Coal gangue recognition algorithm based on improved YOLOv5,” in Proceedings of 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence, Chongqing, China, pp. 1136–1140, 2021.
|
[23] |
M. Sandler, A. Howard, M. L. Zhu, et al., “MobileNetV2: Inverted residuals and linear bottlenecks,” in Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp. 4510–4520, 2018.
|
[24] |
Y. Hu, X. F. Zhang, D. Li, et al., “Anisotropic diffusion filters for flow-dependent variational data assimilation of sea surface temperature,” Ocean Modelling, vol. 184 article no. 102233, 2023. doi: 10.1016/j.ocemod.2023.102233
|
[25] |
Z. Mbarki, C. Ben Jabeur Seddik, and H. Seddik, “Building a modified block matching kernel based on Wave Atom transform for efficient image denoising,” The Egyptian Journal of Remote Sensing and Space Science, vol. 24, no. 3, pp. 857–878, 2021. doi: 10.1016/j.ejrs.2021.08.009
|
[26] |
G. G. Bhutada, R. S. Anand, and S. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Processing, vol. 21, no. 1, pp. 118–130, 2011. doi: 10.1016/j.dsp.2010.09.002
|
[27] |
L. A. de Oliveira Junior, H. R. Medeiros, D. Macêdo, et al., “SegNetRes-CRF: A deep convolutional encoder-decoder architecture for semantic image segmentation,” in Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, pp. 1–6, 2018.
|
[28] |
A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation for multimodal semantic segmentation,” International Journal of Computer Vision, vol. 128, no. 5, pp. 1239–1285, 2020. doi: 10.1007/s11263-019-01188-y
|
[29] |
H. J. Yu, M. F. Jiang, H. R. Chen, et al., “Super-pixel algorithm and group sparsity regularization method for compressed sensing MR image reconstruction,” Optik, vol. 140 pp. 392–404, 2017. doi: 10.1016/j.ijleo.2017.04.069
|
[30] |
H. B. Wu, J. J. Zhang, C. Luo, et al., “Equivalent modeling of photovoltaic power station based on canopy-FCM clustering algorithm,” IEEE Access, vol. 7 pp. 102911–102920, 2019. doi: 10.1109/ACCESS.2019.2931444
|
[31] |
J. Z. Ma, S. Li, H. Qin, et al., “Unsupervised multi-class co-segmentation via joint-cut over L1-manifold hyper-graph of discriminative image regions,” IEEE Transactions on Image Processing, vol. 26, no. 3, pp. 1216–1230, 2017. doi: 10.1109/TIP.2016.2631883
|
[32] |
T. Lei, X. H. Jia, Y. N. Zhang, et al., “Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 3027–3041, 2018. doi: 10.1109/TFUZZ.2018.2796074
|
[33] |
J. F. Jing, S. J. Liu, G. Wang, et al., “Recent advances on image edge detection: A comprehensive review,” Neurocomputing, vol. 503, pp. 259–271, 2022. doi: 10.1016/j.neucom.2022.06.083
|
[34] |
M. M. Rahman, M. K. Pk, and M. S. Uddin, “Optimum threshold parameter estimation of bidimensional empirical mode decomposition using fisher discriminant analysis for speckle noise reduction,” International Arab Journal of Information Technology, vol. 12, no. 5, pp. 456–464, 2015.
|