Enhancing Entity Relationship Extraction in Dialogue Texts using Hypergraph and Heterogeneous Graph
-
Graphical Abstract
-
Abstract
Dialogue relationship extraction (RE) aims to predict relationships between two entities in dialogue. Current approaches to dialogue relationship extraction grapple with long-distance entity relationships in dialogue data as well as complex entity relationships, such as a single entity with multiple types of connections. To address these issues, this paper presents a novel approach for dialogue relationship extraction termed the hypergraphs and heterogeneous graphs model (HG2G). This model introduces a two-tiered structure, comprising dialogue hypergraphs and dialogue heterogeneous graphs, to address the shortcomings of existing methods. The dialogue hypergraph establishes connections between similar nodes using hyper-edges and utilizes hypergraph convolution to capture multi-level features. Simultaneously, the dialogue heterogeneous graph connects nodes and edges of different types, employing heterogeneous graph convolution to aggregate cross-sentence information. Ultimately, the integrated nodes from both graphs capture the semantic nuances inherent in dialogue. Experimental results on the DialogRE dataset demonstrate that the HG2G model outperforms existing state-of-the-art methods.
-
-