Citation: | Jing YANG, Xiujuan LEI, and Yi PAN, “Predicting circRNA-Disease Associations by Using Multi-Biomolecular Networks Based on Variational Graph Auto-Encoder with Attention Mechanism,” Chinese Journal of Electronics, vol. 33, no. 6, pp. 1526–1537, 2024 doi: 10.23919/cje.2023.00.344 |
[1] |
L. S. Kristensen, M. S. Andersen, L. V. W. Stagsted, et al., “The biogenesis, biology and characterization of circular RNAs,” Nature Reviews Genetics, vol. 20, no. 11, pp. 675–691, 2019. doi: 10.1038/s41576-019-0158-7
|
[2] |
M. T. Hsu and M. Coca-Prados, “Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells,” Nature, vol. 280, no. 5720, pp. 339–340, 1979. doi: 10.1038/280339a0
|
[3] |
T. B. Hansen, T. I. Jensen, B. H. Clausen, et al., “Natural RNA circles function as efficient microRNA sponges,” Nature, vol. 495, no. 7441, pp. 384–388, 2013. doi: 10.1038/nature11993
|
[4] |
J. Ju, Y. N. Song, X. Z. Chen, et al., “CircRNA is a potential target for cardiovascular diseases treatment,” Molecular and Cellular Biochemistry, vol. 477, no. 2, pp. 417–430, 2022. doi: 10.1007/s11010-021-04286-z
|
[5] |
J. Zhou, L. Wang, Q. Sun, et al., “Has_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis,” Clinical and Translational Medicine, vol. 11, no. 11, article no. e565, 2021. doi: 10.1002/ctm2.565
|
[6] |
X. Guo, Z. Y. Wang, X. Deng, et al., “Circular RNA CircITCH (has-circ-0001141) suppresses hepatocellular carcinoma (HCC) progression by sponging miR-184,” Cell Cycle, vol. 21, no. 15, pp. 1557–1577, 2022. doi: 10.1080/15384101.2022.2057633
|
[7] |
G. W. Chen, Y. T. Shi, M. M. Liu, et al., “CircHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma,” Cell Death & Disease, vol. 9, no. 2, article no. 175, 2018. doi: 10.1038/s41419-017-0204-3
|
[8] |
S. Ghafouri-Fard, T. Khoshbakht, B. M. Hussen, et al., “Emerging role of circular RNAs in the pathogenesis of ovarian cancer,” Cancer Cell International, vol. 22, no. 1, article no. 172, 2022. doi: 10.1186/s12935-022-02602-1
|
[9] |
L. Zhou, F. F. Li, and S. M. Wang, “Circ-ITCH restrains the expression of MMP-2, MMP-9 and TNF-α in diabetic retinopathy by inhibiting miR-22,” Experimental and Molecular Pathology, vol. 118, article no. 104594, 2021. doi: 10.1016/j.yexmp.2020.104594
|
[10] |
Y. Zhang, X. O. Zhang, T. Chen, et al., “Circular intronic long noncoding RNAs,” Molecular Cell, vol. 51, no. 6, pp. 792–806, 2013. doi: 10.1016/j.molcel.2013.08.017
|
[11] |
L. Wan, L. Zhang, K. Fan, et al., “Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway,” BioMed Research International, vol. 2016, article no. 1579490, 2016. doi: 10.1155/2016/1579490
|
[12] |
P. Glažar, P. Papavasileiou, and N. Rajewsky, “CircBase: A database for circular RNAs,” RNA, vol. 20, no. 11, pp. 1666–1670, 2014. doi: 10.1261/rna.043687.113
|
[13] |
J. H. Li, S. Liu, H. Zhou, et al., “StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data,” Nucleic Acids Research, vol. 42, no. D1, pp. D92–D97, 2014. doi: 10.1093/nar/gkt1248
|
[14] |
S. L. Li, Y. C. Li, B. Chen, et al., “ExoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes,” Nucleic Acids Research, vol. 46, no. D1, pp. D106–D112, 2018. doi: 10.1093/nar/gkx891
|
[15] |
Y. C. Liu, J. R. Li, C. H. Sun, et al., “CircNet: A database of circular RNAs derived from transcriptome sequencing data,” Nucleic Acids Research, vol. 44, no. D1, pp. D209–D215, 2016. doi: 10.1093/nar/gkv940
|
[16] |
R. Dong, X. K. Ma, G. W. Li, et al., “CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison,” Genomics, Proteomics & Bioinformatics, vol. 16, no. 4, pp. 226–233, 2018 doi: 10.1016/j.gpb.2018.08.001
|
[17] |
C. Y. Fan, X. J. Lei, Z. Q. Fang, et al., “CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases,” Database, vol. 2018, article no. bay044, 2018. doi: 10.1093/database/bay044
|
[18] |
C. Y. Fan, X. J. Lei, J. J. Tie, et al., “CircR2Disease v2.0: An updated web server for experimentally validated circRNA–disease associations and its application,” Genomics, Proteomics & Bioinformatics, vol. 20, no. 3, pp. 435–445, 2022. doi: 10.1016/j.gpb.2021.10.002
|
[19] |
X. W. Meng, D. H. Hu, P. J. Zhang, et al., “CircFunBase: A database for functional circular RNAs,” Database, vol. 2019, article no. baz003, 2019. doi: 10.1093/database/baz003
|
[20] |
Z. Zhao, K. Y. Wang, F. Wu, et al., “CircRNA disease: A manually curated database of experimentally supported circRNA-disease associations,” Cell Death & Disease, vol. 9, no. 5, article no. 475, 2018. doi: 10.1038/s41419-018-0503-3
|
[21] |
D. X. Yao, L. Zhang, M. Y. Zheng, et al., “Circ2Disease: A manually curated database of experimentally validated circRNAs in human disease,” Scientific Reports, vol. 8, no. 1, article no. 11018, 2018. doi: 10.1038/s41598-018-29360-3
|
[22] |
C. Y. Fan, X. J. Lei, and F. X. Wu, “Prediction of circRNA-disease associations using KATZ model based on heterogeneous networks,” International Journal of Biological Sciences, vol. 14, no. 14, pp. 1950–1959, 2018. doi: 10.7150/ijbs.28260
|
[23] |
C. Yan, J. X. Wang, and F. X. Wu, “DWNN-RLS: Regularized least squares method for predicting circRNA-disease associations,” BMC Bioinformatics, vol. 19, no. S19, article no. 520, 2018. doi: 10.1186/s12859-018-2522-6
|
[24] |
Y. C. Zhang, X. J. Lei, Y. Pan, et al., “Prediction of disease-associated circRNAs via circRNA–disease pair graph and weighted nuclear norm minimization,” Knowledge-Based Systems, vol. 214, article no. 106694, 2021. doi: 10.1016/J.KNOSYS.2020.106694
|
[25] |
Y. C. Zhang, X. J. Lei, Z. Q. Fang, et al., “CircRNA-disease associations prediction based on metapath2vec++ and matrix factorization,” Big Data Mining and Analytics, vol. 3, no. 4, pp. 280–291, 2020. doi: 10.26599/BDMA.2020.9020025
|
[26] |
M. L. Li, M. Y. Liu, Y. Bin, et al., “Prediction of circRNA-disease associations based on inductive matrix completion,” BMC Medical Genomics, vol. 13, no. S5, article no. 42, 2020. doi: 10.1186/s12920-020-0679-0
|
[27] |
L. Wang, Z. H. You, Y. M. Li, et al., “GCNCDA: A new method for predicting circRNA-disease associations based on graph convolutional network algorithm,” PLoS Computational Biology, vol. 16, no. 5, article no. e1007568, 2020. doi: 10.1371/journal.pcbi.1007568
|
[28] |
J. Yang and X. J. Lei, “Predicting circRNA-disease associations based on autoencoder and graph embedding,” Information Sciences, vol. 571, pp. 323–336, 2021. doi: 10.1016/j.ins.2021.04.073
|
[29] |
M. T. Niu, Q. Zou, and C. Y. Wang, “GMNN2CD: Identification of circRNA– disease associations based on variational inference and graph Markov neural networks,” Bioinformatics, vol. 38, no. 8, pp. 2246–2253, 2022. doi: 10.1093/bioinformatics/btac079
|
[30] |
H. Y. Zhang, L. Wang, Z. H. You, et al., “iGRLCDA: Identifying circRNA–disease association based on graph representation learning,” Briefings in Bioinformatics, vol. 23, no. 3, article no. bbac083, 2022. doi: 10.1093/bib/bbac083
|
[31] |
X. J. Lei, T. B. Mudiyanselage, Y. C. Zhang, et al., “A comprehensive survey on computational methods of non-coding RNA and disease association prediction,” Briefings in Bioinformatics, vol. 22, no. 4, article no. bbaa350, 2021. doi: 10.1093/bib/bbaa350
|
[32] |
P. Veličković, G. Cucurull, A. Casanova, et al., “Graph attention networks,” in Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, pp. 1–12, 2018.
|
[33] |
T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint, arXiv: 1611.07308, 2016.
|
[34] |
M. Liu, Q. Wang, J. Shen, et al., “Circbank: A comprehensive database for circRNA with standard nomenclature,” RNA Biology, vol. 16, no. 7, pp. 899–905, 2019. doi: 10.1080/15476286.2019.1600395
|
[35] |
Z. Huang, J. C. Shi, Y. X. Gao, et al., “HMDD v3.0: A database for experimentally supported human microRNA–disease associations,” Nucleic Acids Research, vol. 47, no. D1, pp. D1013–D1017, 2019. doi: 10.1093/nar/gky1010
|
[36] |
X. Lin, Y. Y. Lu, C. H. Zhang, et al., “LncRNADisease v3.0: An updated database of long non-coding RNA-associated diseases,” Nucleic Acids Research, vol. 52, no. D1, pp. D1365–D1369, 2024. doi: 10.1093/nar/gkad828
|
[37] |
D. Wang, J. Wang, M. Lu, et al., “Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases,” Bioinformatics, vol. 26, no. 13, pp. 1644–1650, 2010. doi: 10.1093/bioinformatics/btq241
|
[38] |
C. E. Lipscomb, “Medical subject headings (MeSH),” Bulletin of the Medical Library Association, vol. 88, no. 3, pp. 265–266, 2000.
|
[39] |
Y. Q. Mao and Z. Y. Lu, “MeSH now: Automatic meSH indexing at PubMed scale via learning to rank,” Journal of Biomedical Semantics, vol. 8, no. 1, article no. 15, 2017. doi: 10.1186/s13326-017-0123-3
|
[40] |
T. Van Laarhoven, S. B. Nabuurs, and E. Marchiori, “Gaussian interaction profile kernels for predicting drug–target interaction,” Bioinformatics, vol. 27, no. 21, pp. 3036–3043, 2011. doi: 10.1093/bioinformatics/btr500
|
[41] |
T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proceedings of the 5th International Conference on Learning Representations, Toulon, France, pp. 1–14, 2017.
|
[42] |
D. J. Hand, “Measuring classifier performance: A coherent alternative to the area under the ROC curve,” Machine Learning, vol. 77, no. 1, pp. 103–123, 2009. doi: 10.1007/s10994-009-5119-5
|
[43] |
B. Ozenne, F. Subtil, and D. Maucort-Boulch, “The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases,” Journal of Clinical Epidemiology, vol. 68, no. 8, pp. 855–859, 2015. doi: 10.1016/j.jclinepi.2015.02.010
|
[44] |
M. G. Huang, Z. Y. Zhong, M. X. Lv, et al., “Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma,” Oncotarget, vol. 7, no. 30, pp. 47186–47200, 2016. doi: 10.18632/oncotarget.9706
|
[45] |
W. Zhang, C. L. Yu, X. C. Wang, et al., “Predicting circRNA-disease associations through linear neighborhood label propagation method,” IEEE Access, vol. 7, pp. 83474–83483, 2019. doi: 10.1109/ACCESS.2019.2920942
|
[46] |
L. Deng, W. Zhang, Y. C. Shi, et al., “Fusion of multiple heterogeneous networks for predicting circRNA-disease associations,” Scientific Reports, vol. 9, no. 1, article no. 9605, 2019. doi: 10.1038/s41598-019-45954-x
|
[47] |
H. Wei and B. Liu, “iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization,” Briefings in Bioinformatics, vol. 21, no. 4, pp. 1356–1367, 2020. doi: 10.1093/bib/bbz057
|
[48] |
H. Z. Zhang, J. T. Fang, Y. P. Sun, et al., “Predicting miRNA-disease associations via node-level attention graph auto-encoder,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1308–1318, 2023. doi: 10.1109/TCBB.2022.3170843
|
[49] |
Q. Z. Wu, Z. H. Deng, W. Zhang, et al., “MLNGCF: CircRNA–disease associations prediction with multilayer attention neural graph-based collaborative filtering,” Bioinformatics, vol. 39, no. 8, article no. btad499, 2023. doi: 10.1093/bioinformatics/btad499
|