Citation: | Zhong TANG, Xiao-Peng YU, Zheng SHI, et al., “CMOS Temperature Sensors: From Module Design to System Design,” Chinese Journal of Electronics, vol. 34, no. 1, pp. 1–10, 2025 doi: 10.23919/cje.2023.00.425 |
[1] |
M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 ℃ from −55 ℃ to 125 ℃,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, 2005. doi: 10.1109/JSSC.2005.858476
|
[2] |
Z. C. Tan, R. Daamen, A. Humbert, et al., “A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2469–2477, 2013. doi: 10.1109/JSSC.2013.2275661
|
[3] |
X. L. Lu, G. Y. Tian, Z. W. Wang, et al., “Research on the time drift stability of differential inductive displacement sensors with frequency output,” Sensors, vol. 22, no. 16, article no. 6234, 2022. doi: 10.3390/s22166234
|
[4] |
M. Crescentini, S. F. Syeda, and G. P. Gibiino, “Hall-effect current sensors: Principles of operation and implementation techniques,” IEEE Sensors Journal, vol. 22, no. 11, pp. 10137–10151, 2022. doi: 10.1109/JSEN.2021.3119766
|
[5] |
O. Bass and J. Shor, “Ultra-miniature 0.003 mm2 PNP-based thermal sensor for CPU thermal monitoring,” in Proceedings of the ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference, Dresden, Germany, pp. 334–337, 2018.
|
[6] |
U. Sönmez, F. Sebastiano, and K. A. A. Makinwa, “Compact thermal-diffusivity-based temperature sensors in 40-nm CMOS for SoC thermal monitoring,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 834–843, 2017. doi: 10.1109/JSSC.2016.2646798
|
[7] |
T. Anand, K. A. A. Makinwa, and P. K. Hanumolu, “A VCO based highly digital temperature sensor with 0.034 ℃/mV supply sensitivity,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2651–2663, 2016. doi: 10.1109/JSSC.2016.2598765
|
[8] |
H. M. Xin, M. Andraud, P. Baltus, et al., “A 174 pW–488.3 nW 1 S/s–100 kS/s all-dynamic resistive temperature sensor with speed/resolution/resistance adaptability,” IEEE Solid-State Circuits Letters, vol. 1, no. 3, pp. 70–73, 2018. doi: 10.1109/LSSC.2018.2827883
|
[9] |
K. Souri, Y. Chae, and K. A. A. Makinwa, “A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0.15 ℃ (3σ) from −55 ℃ to 125 ℃,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 292–301, 2013. doi: 10.1109/JSSC.2012.2214831
|
[10] |
K. A. A. Makinwa, “Smart temperature sensors in standard CMOS,” Procedia Engineering, vol. 5, pp. 930–939, 2010. doi: 10.1016/j.proeng.2010.09.262
|
[11] |
K. A. A. Makinwa, “Smart temperature sensor survey,” Available at: https://ei.tudelft.nl/smart_temperature/, 2023-12.
|
[12] |
M. Cochet, B. Keller, S. Clerc, et al., “A 225 µm2 probe single-point calibration digital temperature sensor using body-bias adjustment in 28 nm FD-SOI CMOS,” IEEE Solid-State Circuits Letters, vol. 1, no. 1, pp. 14–17, 2018. doi: 10.1109/LSSC.2018.2797427
|
[13] |
B. Yousefzadeh, S. H. Shalmany, and K. A. A. Makinwa, “A BJT-based temperature-to-digital converter with ±60 mK (3σ) inaccuracy from −55 ℃ to +125 ℃ in 0.16-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 1044–1052, 2017. doi: 10.1109/JSSC.2016.2638464
|
[14] |
B. Wang, M. K. Law, C. Y. Tsui, et al., “A 10.6 pJ·K2 resolution FoM temperature sensor using astable multivibrator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 869–873, 2018. doi: 10.1109/TCSII.2017.2739707
|
[15] |
B. Wang and M. K. Law, “Subranging BJT-based CMOS temperature sensor with a ±0.45 ℃ inaccuracy (3σ) from −50 ℃ to 180 ℃ and a resolution-FoM of 7.2 pJ·K2 at 150 ℃,” IEEE Journal of Solid-State Circuits, vol. 57, no. 12, pp. 3693–3703, 2022. doi: 10.1109/JSSC.2022.3208770
|
[16] |
S. N. Pan, Y. Q. Luo, S. H. Shalmany, et al., “A resistor-based temperature sensor with a 0.13 pJ·K2 resolution FoM,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 164–173, 2018. doi: 10.1109/JSSC.2017.2746671
|
[17] |
A. Khashaba, J. H. Zhu, A. Elmallah, et al, “A 0.0088mm2 resistor-based temperature sensor achieving 92fJ·K2 FoM in 65nm CMOS,” in Proceedings of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, pp. 60–62, 2020.
|
[18] |
Y. Lee, W. Choi, T. Kim, et al., “A 5800-
|
[19] |
P. Chen, C. C. Chen, C. C. Tsai, et al., “A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642–1648, 2005. doi: 10.1109/JSSC.2005.852041
|
[20] |
T. Someya, A. K. M. M. Islam, and K. Okada, “A 6.4 nW 1.7% relative inaccuracy CMOS temperature sensor utilizing sub-thermal drain voltage stabilization and frequency-locked loop,” IEEE Solid-State Circuits Letters, vol. 3, pp. 458–461, 2020. doi: 10.1109/LSSC.2020.3025962
|
[21] |
K. Y. Yang, Q. Dong, W. Jung, et al, “9.2 A 0.6nJ −0.22/+0.19 ℃ inaccuracy temperature sensor using exponential subthreshold oscillation dependence,” in Proceedings of the 2017 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp. 160–161, 2017.
|
[22] |
C. P. L. van Vroonhoven, D. d’Aquino, and K. A. A. Makinwa, “A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0.2 ℃ (3σ) from −55 ℃ to 125 ℃,” in Proceedings of the 2010 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, pp. 314–315, 2010.
|
[23] |
G. Y. Tian, C. R. Yang, X. L. Lu, et al., “Inductance-to-digital converters (LDC) based integrative multi-parameter eddy current testing sensors for NDT&E,” NDT & E International, vol. 138, article no. 102888, 2023. doi: 10.1016/j.ndteint.2023.102888
|
[24] |
M. A. P. Pertijs, A. Niederkorn, X. Ma, et al., “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 ℃ from −50 ℃ to 120 ℃,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 454–461, 2005. doi: 10.1109/JSSC.2004.841013
|
[25] |
M. Eberlein and I. Yahav, “A 28nm CMOS ultra-compact thermal sensor in current-mode technique,” in Proceedings of the 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, pp. 1–2, 2016.
|
[26] |
N. G. Toth, Z. Tang, T. Someya, et al, “23.7 A BJT-based temperature sensor with ±0.1℃(3σ) inaccuracy from −55℃ to 125℃ and a 0.85pJ·K2 resolution FoM using continuous-time readout,” in Proceedings of the 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, pp. 358–360, 2023.
|
[27] |
T. Oshita, J. Shor, D. E. Duarte, et al., “Compact BJT-based thermal sensor for processor applications in a 14 nm tri-gate CMOS process,” IEEE Journal of Solid-State Circuits, vol. 50, no. 3, pp. 799–807, 2015. doi: 10.1109/JSSC.2015.2396522
|
[28] |
Z. Tang, Y. Fang, Z. Shi, et al., “A 1770-µ m2 leakage-based digital temperature sensor with supply sensitivity suppression in 55-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 781–793, 2020. doi: 10.1109/JSSC.2019.2952855
|
[29] |
G. J. Wang, A. Heidari, K. A. A. Makinwa, et al., “An accurate BJT-based CMOS temperature sensor with duty-cycle-modulated output,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1572–1580, 2017. doi: 10.1109/TIE.2016.2614273
|
[30] |
P. Chen, C. C. Chen, Y. H. Peng, et al., “A time-domain sar smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4℃~+0.6℃ over a 0℃ to 90℃ range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600–609, 2010. doi: 10.1109/JSSC.2010.2040658
|
[31] |
Z. Tang, Y. Fang, X. P. Yu, et al., “A CMOS temperature sensor with versatile readout scheme and high accuracy for multi-sensor systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 11, pp. 3821–3829, 2018. doi: 10.1109/TCSI.2018.2853649
|
[32] |
D. Zhu, J. C. Wang, L. Siek, et al, “High accuracy time-mode duty-cycle-modulation-based temperature sensor for energy efficient system applications,” in Proceedings of the 2014 International Symposium on Integrated Circuits (ISIC), Singapore, pp. 400–403, 2014.
|
[33] |
Z. Tang, Y. Fang, X. P. Yu, et al., “Capacitor-reused CMOS temperature sensor with duty-cycle-modulated output and 0.38 ℃ (3σ) inaccuracy,” Electronics Letters, vol. 54, no. 9, pp. 568–570, 2018. doi: 10.1049/el.2018.0555
|
[34] |
Z. Y. Huang, Z. Tang, X. P. Yu, et al., “A BJT-based CMOS temperature sensor with duty-cycle-modulated output and ±0.5 ℃ (3σ) inaccuracy from −40 ℃ to 125 ℃,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2780–2784, 2021. doi: 10.1109/TCSII.2021.3068283
|
[35] |
Z. Tang, Y. Fang, X. P. Yu, et al., “A dynamic-biased resistor-based CMOS temperature sensor with a duty-cycle-modulated output,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1504–1508, 2020. doi: 10.1109/TCSII.2020.2999272
|
[36] |
M. Eberlein and H. Pretl, “A no-trim, scaling-friendly thermal sensor in 16nm FinFET using bulk diodes as sensing elements,” IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 63–66, 2019. doi: 10.1109/LSSC.2019.2938140
|
[37] |
M. Eberlein, G. Panagopoulos, and H. Pretl, “A 40nW, Sub-IV truly ‘digital’ reverse bandgap reference using bulk-diodes in 16nm FinFET,” in Proceedings of the 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, China, pp. 99–102, 2018.
|
[38] |
S. Park, Y. Kim, W. Choi, et al, “A DTMOST-based temperature sensor with 3σ inaccuracy of ±0.9 ℃ for self-refresh control in 28 nm mobile DRAM,” in Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, pp. 1–4, 2020.
|
[39] |
E. H. Hellen, “Verifying the diode-capacitor circuit voltage decay,” American Journal of Physics, vol. 71, no. 8, pp. 797–800, 2003. doi: 10.1119/1.1578070
|
[40] |
Z. Tang, Y. Fang, X. P. Yu, et al., “An energy-efficient capacitively biased diode-based temperature sensor in 55-nm CMOS,” IEEE Solid-State Circuits Letters, vol. 4, pp. 210–213, 2021. doi: 10.1109/LSSC.2021.3124471
|
[41] |
Z. Tang, S. N. Pan, M. Grubor, et al., “A sub-1 V capacitively biased BJT-based temperature sensor with an inaccuracy of ±0.15 ℃ (3σ) from −55 ℃ to 115 ℃,” IEEE Journal of Solid-State Circuits, vol. 58, no. 12, pp. 3433–3441, 2023. doi: 10.1109/JSSC.2023.3308554
|
[42] |
Z. Tang, N. N. Tan, Z. Shi, et al., “A 1.2V self-referenced temperature sensor with a time-domain readout and a two-step improvement on output dynamic range,” IEEE Sensors Journal, vol. 18, no. 5, pp. 1849–1858, 2018. doi: 10.1109/JSEN.2017.2786735
|
[43] |
Z. Tang, Z. Y. Huang, X. P. Yu, et al., “A 0.26-pJ·K2 2400-µm2 digital temperature sensor in 55-nm CMOS,” IEEE Solid-State Circuits Letters, vol. 4, pp. 96–99, 2021. doi: 10.1109/LSSC.2021.3072989
|